
42 2 The Dedekind-Peano Axioms

2.10 Recursive Definitions*

Recall that we had “defined” addition of natural numbers by the following recursion

equations:

m + 1 := S(m), and m + S(n) := S(m + n).

But this is not an explicit definition! We took it for granted (as was done in the work

of Peano) that a two-place function + (the mapping (m,n) 7→ m + n) satisfying the

above equations exists, without giving any rigorous justification for its existence.

Similarly, multiplication of natural numbers was “defined” by recursion equations

without proper justification.

Dedekind introduced a general method, known as primitive recursion, which pro-

vides such justification. It assures the existence and uniqueness of functions which

are defined implicitly using recursion equations having forms similar to the ones for

addition and multiplication.

We will formulate and prove a general version of Dedekind’s principle of recur-

sive definition, from which the existence and uniqueness for the sum and product

functions can be immediately derived.

Principles of Recursive Definition

The following Basic Principle of Recursive Definition is perhaps the simplest yet

very useful result for defining functions recursively.

Theorem 146 (Basic Principle of Recursive Definition). If Y is a set, a ∈ Y, and

h : Y → Y, then there is a unique f : N→ Y such that

f (1) = a, and f (S(n)) = h( f (n)) for all n ∈ N.

Informally, this says that given a ∈ Y and h : Y → Y , we can form the infinite se-

quence 〈a,h(a),h(h(a)),. . . 〉.

Proof. The uniqueness of the function f can be established by an easy and routine

induction, so let us prove existence.

A subset I of N will be called an initial set if for all k ∈ N, if S(k) ∈ I then k ∈ I.

By routine induction, we can establish the following:

• {1} is an initial set, and every non-empty initial set contains 1 as a member.

• If I is an initial set with k ∈ I then I ∪ {S(k)} is also an initial set.

• For each n ∈ N, there is a unique initial set I such that n ∈ I but S(n) < I.

Let In denote the unique initial set containing n but not S(n). It follows that I1 = {1},

and IS (n) = In ∪ {S(n)} for all n ∈ N. (Informally, In = {1,2,. . . ,n}, the set of first n

natural numbers.) The proof will use functions u : In → Y having domain In .

Let us say that a function u is partially h-recursive with domain In if u : In → Y ,

u(1) = a, and u(S(k)) = h(u(k)) for all k such that S(k) ∈ In .
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We first prove by induction that for every n ∈ N there is a unique partially h-

recursive u with domain In .

Basis step (n = 1): Let v : {1} → Y be defined by setting v(1) = a. Then v is par-

tially h-recursive with domain I1. Moreover, if u,u′ : I1→Y are partially h-recursive

functions with domain I1, then u(1) = a = u′(1), so u = u′ since 1 is the only element

in their domain I1 = {1}. So there is a unique partially h-recursive v with domain I1,

establishing the basis step.

Induction step: Suppose that n ∈ N is such that there is a unique partially h-

recursive v with domain In (induction hypothesis). We fix this v for the rest of this

step, and define w : IS (n)→Y by setting w(k) := v(k) for k ∈ In and w(k) := h(v(n))

if k = S(n). Then w is easily seen to be partially h-recursive with domain IS (n) .

Moreover, if u,u′ : IS (n) → Y are partially h-recursive with domain IS (n) , then the

restrictions u↾In and u′ ↾In are partially h-recursive with domain In , so they must be

identical by induction hypothesis, i.e. u(k) = u′(k) for k ∈ In . In particular, u(n) =

u′(n), so u(S(n)) = h(u(n)) = h(u′(n)) = u′(S(n)), which gives u = u′. Hence there

is a unique partially h-recursive w with domain IS (n) , which finishes the induction

step.

Thus for each n there is a unique partially h-recursive function with domain In ;

let us denote this function by un .

Now define f : N→ Y by setting:

f (n) := un (n).

First, f (1) = a since u1(1) = a. Next, the restriction of uS (n) to In equals un (by

uniqueness, since the restriction is partially h-recursive), so uS (n) (n) = un (n). Hence

f (S(n)) = uS (n) (S(n)) = h(uS (n) (n)) = h(un (n)) = h( f (n)). Thus f satisfies the

recursion equations of the theorem. ⊓⊔

To handle functions of multiple variables, the following theorem is used.

Theorem 147 (General Principle of Recursive Definition). For any g : X→Y and

h : X ×N ×Y →Y, there is a unique function f : X ×N→Y such that for all x ∈ X

and n ∈ N:

f (x,1) = g(x) and f (x,S(n)) = h(x,n, f (x,n)).

Here f is being defined by recursion on the second variable n, that is, n is the

variable of recursion ranging over N, while x is a parameter ranging over the set X .

This is the most general form of recursive definition, where both the parameters (in

X) and the values (in Y ) come from arbitrary sets.

Proof. The proof is essentially the same as that of Theorem 146, since the additional

parameter does not play any significant role in the recursion. The details are left as

an exercise for the reader. ⊓⊔

Theorem 148 (Course of Values Recursion). Let Y be a non-empty set and Y ∗

denote the set of all finite sequences (strings) of elements from Y. Given any

G : Y ∗ → Y there is a unique f : N→ Y such that


