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COUNTABLE METRIC SPACES WITHOUT ISOLATED POINTS

ABHIJIT DASGUPTA

Theorem (Sierpinski, 1914-1915, 1920). Any countable metrizable space without
isolated points is homeomorphic to Q, the rationals with the order topology (same
as Q as a subspace of R with usual topology, or as Q with the metric topology).

The theorem is remarkable, and gives some apparently counter-intuitive exam-
ples of spaces homeomorphic to the usual Q. Consider the “Sorgenfrey topology
on Q,” which has the collection {(p,q] : p,q € Q} as a base for its topology. This
topology on Q is strictly finer than, and yet homeomorphic to, the usual topology
of Q. Another example is Q x QQ as a subspace of the Euclidean plane.

In this article, we present three proofs of Sierpinski’s theorem.

1. ORDER-THEORETIC PROOF

This proof is fairly elementary in the sense that no “big guns” are used (such as
Brouwer’s characterization of the Cantor space or the Alexandrov-Urysohn charac-
terization of the irrationals), and no new back-and-forth method is used, but the
main tool is:

Theorem (Cantor’s Theorem). Any countable linear order which is order dense
(meaning z < y implies there is z such that x < z < y), and has no first or last
element is order isomorphic to (Q, <).

This theorem will be used more than once.

1.1. Easy properties of 2 = ZJ. Let 2 = Zy = {0,1} be the additive group
of integers modulo 2 with the discrete topology, and let 2N be its countable infi-
nite power. Then 2N under pointwise addition is an uncountable abelian compact
topological group.

Fact. If A and B are countable subsets of 2V, then for some p € 2N, p + A4 is
disjoint from B, where p + A is the p-translate of A = the set {p+ = :z € A}.

Proof. (Works in any uncountable group.) The set C ={b—a:b € B and a € A}
is countable as A and B are both countable, so just pick any p € 2V~.C. ([

Fact. 2" is homeomorphic to the Cantor set K.

Proof. Map a binary infinite sequence p € 2V to the real number

oo

2p[n]
Z 3n

n=1

This mapping is seen to be continuous bijection, and so a homeomorphism, as 2
is compact and K is Hausdorff. [
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Since for any fixed p € 2N, the “translation” map = — p + z is an autohomeo-
morphism of 2V, the above two Facts imply:

Corollary 1. If E is a countable subset of the Cantor set K, then any countable
dense subset of K is homeomorphic to a countable dense subset of K\ F.

Theorem 2. Every T space Y with a countable basis consisting of clopen sets is
homeomorphic to a subset of the Cantor set.

Proof. Fix a countable basis {C, : n € N} of clopen sets, and let f,, be the charac-
teristic function of C,,. Then for any n, f,: Y — {0,1} = 2 is continuous. Define
f:Y — 2N by f(x)[n] = fu(x). Thus f is the unique map for which 7, o f = £,
for all n, where m,: 2% — {0,1} is the n-th projection map. Since the family (f,,)
separates points, and also separates points-and-closed-sets, f is an embedding of Y’
into 2. The result now follows as 2" is homeomorphic to the Cantor set. (I

1.2. Order topology of R and the Cantor set. First we review some basic
facts about order topology.
Let (X, <) be a linear order, and A be a subset of X.

Definition. A point p € X is an upper limit point of A if p is not the first element
of X and for all z € X, x < p implies there is a € A such that x < a < p.

Similarly define lower limit point, and call a point a two-sided limit point of A if
it is both an upper limit point and a lower limit point of A.

Definition. X is a Dedekind completion of A if X is order-complete (has no
Dedekind gaps), and every point of X\ A is a two-sided limit point of A.

Fact (Uniqueness of Dedekind completion). If X is a Dedekind completion of A,
and Y is a Dedekind completion of B, and A and B are order isomorphic, then X
and Y are order isomorphic.

Proof. If f: A — B is an order isomorphism, then for any z € X\ A, x determines
a Dedekind gap (L,U) in A, and so (f[L], f[U]) is a Dedekind gap in B. But Y
is a Dedekind completion of B, so there is a unique y € Y such that f[L] < y <
flU]. Set f*(z) = y. The map f* thus defined is an extension of f and an order
isomorphism of X onto Y. (I

Example. R is a Dedekind completion of Q.

Example. The points of the Cantor set K can be divided into two disjoint classes:

(a) The countable set E of “external” points of K consists of the points 0, 1,
and the endpoints of all open intervals removed in the construction of K.
(b) The points of K which are two-sided limit points of K = KNE = {z € K :
for all € > 0, there are a,b € K such that t —e <a <x <b <z +¢€}.
Any z € K has a ternary expansion not containing the digit 1, and z € E iff this
ternary expansion is eventually constant (0 or 2). It is not hard to see that for
every point € K\ F, x is a two-sided limit point of F (and z is also a two-sided
limit point of K\ FE). Thus K is a Dedekind-completion of E C K. In the theorem
below we will see that this can be generalized to any nowhere-dense perfect compact
subset of R.

Let X be a linear order with the order topology.
If Y is a subset of X, there are two natural topologies on Y:
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(a) The relative topology on Y as a topological subspace of X, and
(b) the order topology on Y as a suborder of X.

Fact. The order topology on Y is weaker than the subspace topology.

Example. Let X = (R, <) and Y = [0,1) U [2,3]. Then the order topology on Y
is strictly weaker than the subspace topology on Y; Y with the order topology is
homeomorphic to [0, 1], but Y with the subspace topology is neither connected nor
compact.

Under certain conditions the order topology on a subset coincides with the sub-
space topology:

Fact. Let X be a linear order with the order topology. For a subset Y of X, if
either Y is compact in the subspace topology, or if every point of Y is a two-sided
limit point of Y, then the order topology on Y coincides with the subspace topology.

Theorem. All nowhere-dense perfect compact subsets of R are order-isomorphic.

Proof. Let A and B be nowhere-dense perfect compact subsets of R, and let a; =
inf A, as = supA. Then ay,a2 € A (as A is compact), and A C [a1,a2]. Now
[a1,a2]~A = (a1,a2)\A is an open set in R, and so it is a countable disjoint union
of open intervals. Let 8§ be the family of these open intervals, i.e. the components
of [a1,a9]NA. f I,J € §, we say I < .J if some (and so any) point of I is less than
some (and so any) point of J. Thus the ordering of the reals induce an ordering
of 8. It is easy to see that this ordering on 8 is order-dense (because A is nowhere
dense and perfect), and without first or last point. Moreover 8 is countable. Let E
be the set of end-points of the intervals of 8§ together with a; and as.

Similarly take I to be the component intervals of [by,be]\ B, where by = inf B
and bs = sup B, and order 7 naturally to get another countable order-dense set
without first or last point. Let F' be the set of end-points of the intervals of T
together with b; and bs.

By Cantor’s theorem there is an order preserving bijection from 8 onto J. This
bijection naturally induces an order preserving bijection between E and F', thus F
and F' are order-isomorphic. Now note that A is a Dedekind completion of E, and
B is a Dedekind completion of F', so A and B are order-isomorphic. [l

Since the Cantor set is a nowhere-dense perfect compact subset of R, we have:

Corollary. Any nowhere-dense perfect compact subset of R is order isomorphic to
the Cantor set.

Since for any compact subset of R, the order topology coincides with the subspace
topology, we have:

Corollary 3. Any nowhere-dense perfect compact subset of R is homeomorphic to
the Cantor set.

Note A: The proof of the theorem shows that the order type of the Cantor set
(and thus of any nowhere-dense perfect compact subset of R) can be characterized
as the Dedekind completion of 1 4 27 + 1, where 7 is the order type of (Q, <).

Note B: Brouwer’s characterization of the Cantor space as the unique zero-
dimensional compact perfect metrizable space can be derived from this corollary.
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1.3. The Proof. Let X be any countable metrizable space without isolated points.
Then X has a countable basis consisting of clopen sets. To see this, let p € X. Put
S(p,r) = {z : d(p,x) = r}. Then for any ¢ > 0, S(p,r) is empty for at least one
positive real r < €, and for this r, the open ball of radius r centered at p is clopen.
Hence by Theorem 2 (Section 1.1):
X is homeomorphic to a dense-in-itself subset of the Cantor set.
Since the closure of a dense-in-itself subset of the Cantor set is a nowhere-dense
perfect compact subset of R, we get:
X densely embeds in a nowhere-dense perfect compact subset of R.
By Corollary 3 (Section 1.2):
X densely embeds in the Cantor set K.
By Corollary 1 (Section 1.1):
X is homeomorphic to a countable dense subset D of K\ F,
where F is the countable set of “external endpoints” of the Cantor set.
Since D is a dense subset of K\ E, every point of D is a two-sided limit point of
D, so the subspace topology on D coincides with the order topology on D. Hence:
X is homeomorphic to (D, <) with order topology.
Again because D is a countable dense subset of K\ E, the linear order (D, <) is
countable, order-dense, and without endpoints. So by Cantor’s theorem (second
application!):
(D, <) is order isomorphic to (Q, <).
Finally it follows:
X is homeomorphic to (Q, <) with order topology.

2. PROOF USING THE ALEXANDROV-URYSOHN THEOREM

Definition. A topological space is nowhere compact if every compact subset has
empty interior.

The following fact is proved by a routine elementary topological argument:

Fact. If X is a subspace of a Hausdorff space Y, and both X and Y\ X are dense
in Y, then X is nowhere compact.

Theorem (Alexandrov-Urysohn). A zero-dimensional nowhere compact separable
complete metric space is homeomorphic to R\ Q, the subspace of irrationals in R.

We now give a proof of Sierpinski’s theorem using the above theorem of Alexan-
drov and Urysohn (which we do not prove here).

Proof. Let X = {x,, : m € N} be a countable metric space without isolated points.
We regard X as a subset of its metric completion (X*,d).

For each m,n € N there is 7, , > 0 with rp, ., < 1/n and S(@m,, rmn) N X = O,
where S(p,r) = {x € X* : d(p,z) = r}. Let H = X* U nenS(@m, T m,n). Then
H is zero-dimensional by construction. Also H is a G5 subset of X* containing
X, so H is completely metrizable (recall that a subset of a complete metric space
is completely metrizable iff it is a Gs), and of course H is separable and without
isolated points. Thus X is a meager subset of H and by the Baire category theorem,
H~ X is dense in H. Now choose a countable dense subset D of H~ X, and put
Y = H~D. Again, Y is a G5 subset of H containing X, so Y is a separable
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completely metrizable zero-dimensional space containing X. Moreover, both Y and
H~\Y = D are dense in H, so Y is nowhere compact. Hence by the Alexandrov-
Urysohn theorem, Y is homeomorphic to the irrationals.

It follows that X is homeomorphic to a dense subspace of the irrationals, and
hence to a dense subspace of R.

But a countable dense set in R is homeomorphic to Q by Cantor’s Theorem. [

3. A DIRECT BACK-AND-FORTH ARGUMENT

Theorem. Let X and Y be Ty spaces without isolated points and each possessing
a countable basis consisting of clopen sets. Let A and B be a countable dense
subsets of X and Y respectively. Then there is a bijection f: A — B which is
a homeomorphism from A onto B. If in addition Y is compact, then f extends
uniquely to a relative homeomorphism f* from X into Y. If X is also compact
then f* is a homeomorphism of X onto Y.

Proof. Assume that 8 is a countable algebra (field) of clopen subsets of X which
forms a basis for the topology of X. Similarly, let T be a countable algebra (field)
of clopen subsets of Y which forms a basis for the topology of Y.

By a partition P of a set E' we mean a collection of non-empty disjoint subsets
of E whose union is E. If P is a partition of E, and « € E, then P[x] denotes the
unique member of P containing x. A subset C' of F is a choice set for the partition
P if P={P[z]: x € C}, and P[x] # Ply] for any distinct z,y € C.

By a condition we mean a triple (P, Q, f) satisfying:

(a) P C 8 is a finite partition of X (by clopen sets from §),

(b) @ C T is a finite partition of Y (by clopen sets from T),

(¢) f is a finite function such that dom(f) C A and ran(f) C B,
(d) dom(f) is a choice set for P, and

(e) ran(f) is a choice set for Q.

We say that a condition (Ps, Q2, f2) extends a condition (Py, Q1, f1) if P, refines Py,

Q2 refines Q1, f2 2 f1, and for any z,a € dom(f2), x € Pi[a] iff f2[z] € Q1[f2(a)].
It is easily seen that this relation is reflexive, antisymmetric, and transitive.

Lemma. Given a condition (P, @1, f1) and a € A (resp. b € B), there is a condi-
tion (Pa, Q2, f2) extending (Py, @1, f1) such that a € dom(f2) (resp. b € ran(fs)).
Given a condition (P, @1, f1) and a set S € 8§ (resp. T' € T) there is a condition
(Ps, Q2, f2) extending (Py, @1, f1) such that S is a union of sets in Py (resp. T is a
union of sets in Q).

The proof of the lemma is left as an exercise.

Now enumerate 8 = {S,, : n € N}, T ={T,, : n € N}, A = {a, : n € N}, and
B ={b, :n € N}. Let P, = {X}, Q1 = {YV}, and f1 = {{(a,b)}, where a € A
and b € B are fixed arbitrarily. Given a condition (P, Qy, fr), use the lemma to
inductively choose a condition (P41, Qn+1, fnt+1) extending (P, @Qn, fr) such that
Sp, is a union of sets in P11, T3, is a union of sets in Qn41, a, € dom(f,+1), and
by, € ran(f,41). Finally let f = U, fn.

By construction, f: A — B is a bijection. Moreover, for any S € § there is a
unique T € T such that for any a € A, a € S iff f(a) € T, and similarly for any
T € T there is S € 8 such that for any a € A, a € S iff f(a) € T. This defines
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a bijection H: 8§ — T with the property that for any S € § and a € A, a € S iff
f(a) € H(S). (H can be seen to be a set-algebra isomorphism.)

It follows that f is a homeomorphism of A onto B.

If Y is compact, then given any x € X, let V, = {H(S): 2 € S, S € 8}. Then
V. is a filter of clopen subsets of Y with the property that for any 7" € 7, either
T eV, or YN\T €V,. By this property and compactness of Y, NV, is a singleton
{y}. Set f*(z) =y. Then f*: X — Y is an embedding.

If X is also compact, then the image of f* is a compact subset of Y containing
the dense set B, so f* must be onto, and hence a homeomorphism of X onto Y. O

The theorem immediately implies Brouwer’s characterization of the Cantor set,
and more:

Corollary (Brouwer). Any two second countable compact zero-dimensional spaces
without isolated points are homeomorphic. In fact, they are countable dense ho-
mogeneous, meaning that given countable dense subsets of the two spaces, a home-
omorphism can be found which maps one dense subset onto the other.

Corollary (Brouwer). The Cantor set is the topologically unique second countable
compact zero-dimensional space without isolated points. Moreover, it is countable
dense homogeneous.
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