Topology Explained. June 2005. Published by Topology Atlas. Document # paca-25. ©2005 by Topology Atlas. This paper is online at http://at.yorku.ca/p/a/c/a/25.htm.

COUNTABLE METRIC SPACES WITHOUT ISOLATED POINTS

ABHIJIT DASGUPTA

Theorem (Sierpinski, 1914–1915, 1920). Any countable metrizable space without isolated points is homeomorphic to \mathbb{Q} , the rationals with the order topology (same as \mathbb{Q} as a subspace of \mathbb{R} with usual topology, or as \mathbb{Q} with the metric topology).

The theorem is remarkable, and gives some apparently counter-intuitive examples of spaces homeomorphic to the usual \mathbb{Q} . Consider the "Sorgenfrey topology on \mathbb{Q} ," which has the collection $\{(p,q]: p,q \in \mathbb{Q}\}$ as a base for its topology. This topology on \mathbb{Q} is strictly finer than, and yet homeomorphic to, the usual topology of \mathbb{Q} . Another example is $\mathbb{Q} \times \mathbb{Q}$ as a subspace of the Euclidean plane.

In this article, we present three proofs of Sierpinski's theorem.

1. Order-theoretic proof

This proof is fairly elementary in the sense that no "big guns" are used (such as Brouwer's characterization of the Cantor space or the Alexandrov-Urysohn characterization of the irrationals), and no new back-and-forth method is used, but the main tool is:

Theorem (Cantor's Theorem). Any countable linear order which is order dense (meaning x < y implies there is z such that x < z < y), and has no first or last element is order isomorphic to $(\mathbb{Q}, <)$.

This theorem will be used more than once.

1.1. Easy properties of $2^{\mathbb{N}} = \mathbb{Z}_2^{\mathbb{N}}$. Let $2 = \mathbb{Z}_2 = \{0, 1\}$ be the additive group of integers modulo 2 with the discrete topology, and let $2^{\mathbb{N}}$ be its countable infinite power. Then $2^{\mathbb{N}}$ under pointwise addition is an uncountable abelian compact topological group.

Fact. If A and B are countable subsets of $\mathbf{2}^{\mathbb{N}}$, then for some $p \in \mathbf{2}^{\mathbb{N}}$, p + A is disjoint from B, where p + A is the p-translate of A = the set $\{p + x : x \in A\}$.

Proof. (Works in any uncountable group.) The set $C = \{b - a : b \in B \text{ and } a \in A\}$ is countable as A and B are both countable, so just pick any $p \in 2^{\mathbb{N}} \setminus C$.

Fact. $\mathbf{2}^{\mathbb{N}}$ is homeomorphic to the Cantor set K.

Proof. Map a binary infinite sequence $p \in \mathbf{2}^{\mathbb{N}}$ to the real number

$$\sum_{n=1}^{\infty} \frac{2p[n]}{3^n}$$

This mapping is seen to be continuous bijection, and so a homeomorphism, as $2^{\mathbb{N}}$ is compact and K is Hausdorff.

ABHIJIT DASGUPTA

Since for any fixed $p \in \mathbf{2}^{\mathbb{N}}$, the "translation" map $x \to p + x$ is an autohomeomorphism of $\mathbf{2}^{\mathbb{N}}$, the above two Facts imply:

Corollary 1. If *E* is a countable subset of the Cantor set *K*, then any countable dense subset of *K* is homeomorphic to a countable dense subset of $K \setminus E$.

Theorem 2. Every T_0 space Y with a countable basis consisting of clopen sets is homeomorphic to a subset of the Cantor set.

Proof. Fix a countable basis $\{C_n : n \in \mathbb{N}\}$ of clopen sets, and let f_n be the characteristic function of C_n . Then for any $n, f_n : Y \to \{0, 1\} = 2$ is continuous. Define $f : Y \to 2^{\mathbb{N}}$ by $f(x)[n] = f_n(x)$. Thus f is the unique map for which $\pi_n \circ f = f_n$ for all n, where $\pi_n : 2^{\mathbb{N}} \to \{0, 1\}$ is the *n*-th projection map. Since the family $\langle f_n \rangle$ separates points, and also separates points-and-closed-sets, f is an embedding of Y into $2^{\mathbb{N}}$. The result now follows as $2^{\mathbb{N}}$ is homeomorphic to the Cantor set. \Box

1.2. Order topology of **R** and the Cantor set. First we review some basic facts about order topology.

Let (X, <) be a linear order, and A be a subset of X.

Definition. A point $p \in X$ is an *upper limit point* of A if p is not the first element of X and for all $x \in X$, x < p implies there is $a \in A$ such that x < a < p.

Similarly define *lower limit point*, and call a point a *two-sided limit point* of A if it is both an upper limit point and a lower limit point of A.

Definition. X is a *Dedekind completion* of A if X is order-complete (has no Dedekind gaps), and every point of $X \setminus A$ is a two-sided limit point of A.

Fact (Uniqueness of Dedekind completion). If X is a Dedekind completion of A, and Y is a Dedekind completion of B, and A and B are order isomorphic, then X and Y are order isomorphic.

Proof. If $f: A \to B$ is an order isomorphism, then for any $x \in X \setminus A$, x determines a Dedekind gap (L, U) in A, and so (f[L], f[U]) is a Dedekind gap in B. But Yis a Dedekind completion of B, so there is a unique $y \in Y$ such that f[L] < y < f[U]. Set $f^*(x) = y$. The map f^* thus defined is an extension of f and an order isomorphism of X onto Y.

Example. \mathbb{R} is a Dedekind completion of \mathbb{Q} .

Example. The points of the Cantor set K can be divided into two disjoint classes:

- (a) The countable set E of "external" points of K consists of the points 0, 1, and the endpoints of all open intervals removed in the construction of K.
- (b) The points of K which are two-sided limit points of $K = K \setminus E = \{x \in K :$ for all $\epsilon > 0$, there are $a, b \in K$ such that $x \epsilon < a < x < b < x + \epsilon\}$.

Any $x \in K$ has a ternary expansion not containing the digit 1, and $x \in E$ iff this ternary expansion is eventually constant (0 or 2). It is not hard to see that for every point $x \in K \setminus E$, x is a two-sided limit point of E (and x is also a two-sided limit point of $K \setminus E$). Thus K is a Dedekind-completion of $E \subseteq K$. In the theorem below we will see that this can be generalized to any nowhere-dense perfect compact subset of \mathbb{R} .

Let X be a linear order with the order topology.

If Y is a subset of X, there are two natural topologies on Y:

 $\mathbf{2}$

- (a) The relative topology on Y as a topological subspace of X, and
- (b) the order topology on Y as a suborder of X.

Fact. The order topology on Y is weaker than the subspace topology.

Example. Let X = (R, <) and $Y = [0, 1) \cup [2, 3]$. Then the order topology on Y is strictly weaker than the subspace topology on Y; Y with the order topology is homeomorphic to [0, 1], but Y with the subspace topology is neither connected nor compact.

Under certain conditions the order topology on a subset coincides with the subspace topology:

Fact. Let X be a linear order with the order topology. For a subset Y of X, if either Y is compact in the subspace topology, or if every point of Y is a two-sided limit point of Y, then the order topology on Y coincides with the subspace topology.

Theorem. All nowhere-dense perfect compact subsets of \mathbb{R} are order-isomorphic.

Proof. Let A and B be nowhere-dense perfect compact subsets of \mathbb{R} , and let $a_1 = \inf A$, $a_2 = \sup A$. Then $a_1, a_2 \in A$ (as A is compact), and $A \subseteq [a_1, a_2]$. Now $[a_1, a_2] \setminus A = (a_1, a_2) \setminus A$ is an open set in \mathbb{R} , and so it is a countable disjoint union of open intervals. Let S be the family of these open intervals, i.e. the components of $[a_1, a_2] \setminus A$. If $I, J \in S$, we say I < J if some (and so any) point of I is less than some (and so any) point of J. Thus the ordering of the reals induce an ordering of S. It is easy to see that this ordering on S is order-dense (because A is nowhere dense and perfect), and without first or last point. Moreover S is countable. Let E be the set of end-points of the intervals of S together with a_1 and a_2 .

Similarly take \mathcal{T} to be the component intervals of $[b_1, b_2] \setminus B$, where $b_1 = \inf B$ and $b_2 = \sup B$, and order \mathcal{T} naturally to get another countable order-dense set without first or last point. Let F be the set of end-points of the intervals of \mathcal{T} together with b_1 and b_2 .

By Cantor's theorem there is an order preserving bijection from S onto \mathcal{T} . This bijection naturally induces an order preserving bijection between E and F, thus E and F are order-isomorphic. Now note that A is a Dedekind completion of E, and B is a Dedekind completion of F, so A and B are order-isomorphic. \Box

Since the Cantor set is a nowhere-dense perfect compact subset of \mathbb{R} , we have:

Corollary. Any nowhere-dense perfect compact subset of \mathbb{R} is order isomorphic to the Cantor set.

Since for any compact subset of \mathbb{R} , the order topology coincides with the subspace topology, we have:

Corollary 3. Any nowhere-dense perfect compact subset of \mathbb{R} is homeomorphic to the Cantor set.

Note A: The proof of the theorem shows that the order type of the Cantor set (and thus of any nowhere-dense perfect compact subset of \mathbb{R}) can be characterized as the Dedekind completion of $1 + 2\eta + 1$, where η is the order type of ($\mathbb{Q}, <$).

Note B: Brouwer's characterization of the Cantor space as the unique zerodimensional compact perfect metrizable space can be derived from this corollary. 1.3. The Proof. Let X be any countable metrizable space without isolated points. Then X has a countable basis consisting of clopen sets. To see this, let $p \in X$. Put $S(p,r) = \{x : d(p,x) = r\}$. Then for any $\epsilon > 0$, S(p,r) is empty for at least one positive real $r < \epsilon$, and for this r, the open ball of radius r centered at p is clopen. Hence by Theorem 2 (Section 1.1):

X is homeomorphic to a dense-in-itself subset of the Cantor set.

Since the closure of a dense-in-itself subset of the Cantor set is a nowhere-dense perfect compact subset of R, we get:

X densely embeds in a nowhere-dense perfect compact subset of \mathbb{R} .

By Corollary 3 (Section 1.2):

X densely embeds in the Cantor set K.

By Corollary 1 (Section 1.1):

X is homeomorphic to a countable dense subset D of $K \setminus E$,

where E is the countable set of "external endpoints" of the Cantor set.

Since D is a dense subset of $K \setminus E$, every point of D is a two-sided limit point of D, so the subspace topology on D coincides with the order topology on D. Hence:

X is homeomorphic to (D, <) with order topology.

Again because D is a countable dense subset of $K \setminus E$, the linear order (D, <) is countable, order-dense, and without endpoints. So by Cantor's theorem (second application!):

(D, <) is order isomorphic to (Q, <).

Finally it follows:

X is homeomorphic to (Q, <) with order topology.

2. Proof using the Alexandrov-Urysohn theorem

Definition. A topological space is *nowhere compact* if every compact subset has empty interior.

The following fact is proved by a routine elementary topological argument:

Fact. If X is a subspace of a Hausdorff space Y, and both X and $Y \setminus X$ are dense in Y, then X is nowhere compact.

Theorem (Alexandrov-Urysohn). A zero-dimensional nowhere compact separable complete metric space is homeomorphic to $\mathbb{R} \setminus \mathbb{Q}$, the subspace of irrationals in \mathbb{R} .

We now give a proof of Sierpinski's theorem using the above theorem of Alexandrov and Urysohn (which we do not prove here).

Proof. Let $X = \{x_m : m \in \mathbb{N}\}$ be a countable metric space without isolated points. We regard X as a subset of its metric completion (X^*, d) .

For each $m, n \in \mathbb{N}$ there is $r_{m,n} > 0$ with $r_{m,n} < 1/n$ and $S(x_m, r_{m,n}) \cap X = \emptyset$, where $S(p,r) = \{x \in X^* : d(p,x) = r\}$. Let $H = X^* \setminus \bigcup_{n,n \in \mathbb{N}} S(x_m, r_{m,n})$. Then H is zero-dimensional by construction. Also H is a \mathcal{G}_{δ} subset of X^* containing X, so H is completely metrizable (recall that a subset of a complete metric space is completely metrizable iff it is a \mathcal{G}_{δ}), and of course H is separable and without isolated points. Thus X is a meager subset of H and by the Baire category theorem, $H \setminus X$ is dense in H. Now choose a countable dense subset D of $H \setminus X$, and put $Y = H \setminus D$. Again, Y is a \mathcal{G}_{δ} subset of H containing X, so Y is a separable completely metrizable zero-dimensional space containing X. Moreover, both Y and $H \setminus Y = D$ are dense in H, so Y is nowhere compact. Hence by the Alexandrov-Urysohn theorem, Y is homeomorphic to the irrationals.

It follows that X is homeomorphic to a dense subspace of the irrationals, and hence to a dense subspace of \mathbb{R} .

But a countable dense set in \mathbb{R} is homeomorphic to \mathbb{Q} by Cantor's Theorem. \Box

3. A DIRECT BACK-AND-FORTH ARGUMENT

Theorem. Let X and Y be T_0 spaces without isolated points and each possessing a countable basis consisting of clopen sets. Let A and B be a countable dense subsets of X and Y respectively. Then there is a bijection $f: A \to B$ which is a homeomorphism from A onto B. If in addition Y is compact, then f extends uniquely to a relative homeomorphism f^* from X into Y. If X is also compact then f^* is a homeomorphism of X onto Y.

Proof. Assume that S is a countable algebra (field) of clopen subsets of X which forms a basis for the topology of X. Similarly, let \mathcal{T} be a countable algebra (field) of clopen subsets of Y which forms a basis for the topology of Y.

By a partition P of a set E we mean a collection of non-empty disjoint subsets of E whose union is E. If P is a partition of E, and $x \in E$, then P[x] denotes the unique member of P containing x. A subset C of E is a *choice set* for the partition P if $P = \{P[x] : x \in C\}$, and $P[x] \neq P[y]$ for any distinct $x, y \in C$.

By a *condition* we mean a triple (P, Q, f) satisfying:

- (a) $P \subseteq S$ is a finite partition of X (by clopen sets from S),
- (b) $Q \subseteq \mathcal{T}$ is a finite partition of Y (by clopen sets from \mathcal{T}),
- (c) f is a finite function such that $dom(f) \subseteq A$ and $ran(f) \subseteq B$,
- (d) dom(f) is a choice set for P, and
- (e) ran(f) is a choice set for Q.

We say that a condition (P_2, Q_2, f_2) extends a condition (P_1, Q_1, f_1) if P_2 refines P_1 , Q_2 refines $Q_1, f_2 \supseteq f_1$, and for any $x, a \in \text{dom}(f_2), x \in P_1[a]$ iff $f_2[x] \in Q_1[f_2(a)]$. It is easily seen that this relation is reflexive, antisymmetric, and transitive.

Lemma. Given a condition (P_1, Q_1, f_1) and $a \in A$ (resp. $b \in B$), there is a condition (P_2, Q_2, f_2) extending (P_1, Q_1, f_1) such that $a \in \text{dom}(f_2)$ (resp. $b \in \text{ran}(f_2)$). Given a condition (P_1, Q_1, f_1) and a set $S \in S$ (resp. $T \in T$) there is a condition (P_2, Q_2, f_2) extending (P_1, Q_1, f_1) such that S is a union of sets in P_2 (resp. T is a union of sets in Q_2).

The proof of the lemma is left as an exercise.

Now enumerate $S = \{S_n : n \in \mathbb{N}\}, \ \mathcal{T} = \{T_n : n \in \mathbb{N}\}, \ A = \{a_n : n \in \mathbb{N}\}, \ \text{and} B = \{b_n : n \in \mathbb{N}\}.$ Let $P_1 = \{X\}, \ Q_1 = \{Y\}, \ \text{and} \ f_1 = \{\langle a, b \rangle\}, \ \text{where} \ a \in A$ and $b \in B$ are fixed arbitrarily. Given a condition (P_n, Q_n, f_n) , use the lemma to inductively choose a condition $(P_{n+1}, Q_{n+1}, f_{n+1})$ extending (P_n, Q_n, f_n) such that S_n is a union of sets in $P_{n+1}, \ T_n$ is a union of sets in $Q_{n+1}, \ a_n \in \text{dom}(f_{n+1}), \ \text{and}$ $b_n \in \text{ran}(f_{n+1}).$ Finally let $f = \bigcup_n f_n$.

By construction, $f: A \to B$ is a bijection. Moreover, for any $S \in S$ there is a unique $T \in \mathcal{T}$ such that for any $a \in A$, $a \in S$ iff $f(a) \in T$, and similarly for any $T \in \mathcal{T}$ there is $S \in S$ such that for any $a \in A$, $a \in S$ iff $f(a) \in T$. This defines

ABHIJIT DASGUPTA

a bijection $H: S \to T$ with the property that for any $S \in S$ and $a \in A$, $a \in S$ iff $f(a) \in H(S)$. (*H* can be seen to be a set-algebra isomorphism.)

It follows that f is a homeomorphism of A onto B.

If Y is compact, then given any $x \in X$, let $\mathcal{V}_x = \{H(S) : x \in S, S \in S\}$. Then \mathcal{V}_x is a filter of clopen subsets of Y with the property that for any $T \in \mathcal{T}$, either $T \in \mathcal{V}_x$ or $Y \setminus T \in \mathcal{V}_x$. By this property and compactness of $Y, \cap \mathcal{V}_x$ is a singleton $\{y\}$. Set $f^*(x) = y$. Then $f^* \colon X \to Y$ is an embedding.

If X is also compact, then the image of f^* is a compact subset of Y containing the dense set B, so f^* must be onto, and hence a homeomorphism of X onto Y. \Box

The theorem immediately implies Brouwer's characterization of the Cantor set, and more:

Corollary (Brouwer). Any two second countable compact zero-dimensional spaces without isolated points are homeomorphic. In fact, they are countable dense homogeneous, meaning that given countable dense subsets of the two spaces, a homeomorphism can be found which maps one dense subset onto the other.

Corollary (Brouwer). The Cantor set is the topologically unique second countable compact zero-dimensional space without isolated points. Moreover, it is countable dense homogeneous.

Date: June 25, 2005.(c) 2005 by Topology Atlas. All rights reserved.