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COUNTABLE METRIC SPACES WITHOUT ISOLATED POINTS

ABHIJIT DASGUPTA

Theorem (Sierpinski, 1914–1915, 1920). Any countable metrizable space without
isolated points is homeomorphic to Q, the rationals with the order topology (same
as Q as a subspace of R with usual topology, or as Q with the metric topology).

The theorem is remarkable, and gives some apparently counter-intuitive exam-
ples of spaces homeomorphic to the usual Q. Consider the “Sorgenfrey topology
on Q,” which has the collection {(p, q] : p, q ∈ Q} as a base for its topology. This
topology on Q is strictly finer than, and yet homeomorphic to, the usual topology
of Q. Another example is Q×Q as a subspace of the Euclidean plane.

In this article, we present three proofs of Sierpinski’s theorem.

1. Order-theoretic proof

This proof is fairly elementary in the sense that no “big guns” are used (such as
Brouwer’s characterization of the Cantor space or the Alexandrov-Urysohn charac-
terization of the irrationals), and no new back-and-forth method is used, but the
main tool is:

Theorem (Cantor’s Theorem). Any countable linear order which is order dense
(meaning x < y implies there is z such that x < z < y), and has no first or last
element is order isomorphic to (Q, <).

This theorem will be used more than once.

1.1. Easy properties of 2N = ZN
2 . Let 2 = Z2 = {0, 1} be the additive group

of integers modulo 2 with the discrete topology, and let 2N be its countable infi-
nite power. Then 2N under pointwise addition is an uncountable abelian compact
topological group.

Fact. If A and B are countable subsets of 2N, then for some p ∈ 2N, p + A is
disjoint from B, where p + A is the p-translate of A = the set {p + x : x ∈ A}.

Proof. (Works in any uncountable group.) The set C = {b− a : b ∈ B and a ∈ A}
is countable as A and B are both countable, so just pick any p ∈ 2NrC. �

Fact. 2N is homeomorphic to the Cantor set K.

Proof. Map a binary infinite sequence p ∈ 2N to the real number
∞∑

n=1

2p[n]
3n

.

This mapping is seen to be continuous bijection, and so a homeomorphism, as 2N

is compact and K is Hausdorff. �
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Since for any fixed p ∈ 2N, the “translation” map x → p + x is an autohomeo-
morphism of 2N, the above two Facts imply:

Corollary 1. If E is a countable subset of the Cantor set K, then any countable
dense subset of K is homeomorphic to a countable dense subset of KrE.

Theorem 2. Every T0 space Y with a countable basis consisting of clopen sets is
homeomorphic to a subset of the Cantor set.

Proof. Fix a countable basis {Cn : n ∈ N} of clopen sets, and let fn be the charac-
teristic function of Cn. Then for any n, fn : Y → {0, 1} = 2 is continuous. Define
f : Y → 2N by f(x)[n] = fn(x). Thus f is the unique map for which πn ◦ f = fn

for all n, where πn : 2N → {0, 1} is the n-th projection map. Since the family 〈fn〉
separates points, and also separates points-and-closed-sets, f is an embedding of Y
into 2N. The result now follows as 2N is homeomorphic to the Cantor set. �

1.2. Order topology of R and the Cantor set. First we review some basic
facts about order topology.

Let (X, <) be a linear order, and A be a subset of X.

Definition. A point p ∈ X is an upper limit point of A if p is not the first element
of X and for all x ∈ X, x < p implies there is a ∈ A such that x < a < p.

Similarly define lower limit point, and call a point a two-sided limit point of A if
it is both an upper limit point and a lower limit point of A.

Definition. X is a Dedekind completion of A if X is order-complete (has no
Dedekind gaps), and every point of XrA is a two-sided limit point of A.

Fact (Uniqueness of Dedekind completion). If X is a Dedekind completion of A,
and Y is a Dedekind completion of B, and A and B are order isomorphic, then X
and Y are order isomorphic.

Proof. If f : A → B is an order isomorphism, then for any x ∈ XrA, x determines
a Dedekind gap (L,U) in A, and so (f [L], f [U ]) is a Dedekind gap in B. But Y
is a Dedekind completion of B, so there is a unique y ∈ Y such that f [L] < y <
f [U ]. Set f∗(x) = y. The map f∗ thus defined is an extension of f and an order
isomorphism of X onto Y . �

Example. R is a Dedekind completion of Q.

Example. The points of the Cantor set K can be divided into two disjoint classes:
(a) The countable set E of “external” points of K consists of the points 0, 1,

and the endpoints of all open intervals removed in the construction of K.
(b) The points of K which are two-sided limit points of K = KrE = {x ∈ K :

for all ε > 0, there are a, b ∈ K such that x− ε < a < x < b < x + ε}.
Any x ∈ K has a ternary expansion not containing the digit 1, and x ∈ E iff this
ternary expansion is eventually constant (0 or 2). It is not hard to see that for
every point x ∈ KrE, x is a two-sided limit point of E (and x is also a two-sided
limit point of KrE). Thus K is a Dedekind-completion of E ⊆ K. In the theorem
below we will see that this can be generalized to any nowhere-dense perfect compact
subset of R.

Let X be a linear order with the order topology.
If Y is a subset of X, there are two natural topologies on Y :
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(a) The relative topology on Y as a topological subspace of X, and
(b) the order topology on Y as a suborder of X.

Fact. The order topology on Y is weaker than the subspace topology.

Example. Let X = (R,<) and Y = [0, 1) ∪ [2, 3]. Then the order topology on Y
is strictly weaker than the subspace topology on Y ; Y with the order topology is
homeomorphic to [0, 1], but Y with the subspace topology is neither connected nor
compact.

Under certain conditions the order topology on a subset coincides with the sub-
space topology:

Fact. Let X be a linear order with the order topology. For a subset Y of X, if
either Y is compact in the subspace topology, or if every point of Y is a two-sided
limit point of Y , then the order topology on Y coincides with the subspace topology.

Theorem. All nowhere-dense perfect compact subsets of R are order-isomorphic.

Proof. Let A and B be nowhere-dense perfect compact subsets of R, and let a1 =
inf A, a2 = supA. Then a1, a2 ∈ A (as A is compact), and A ⊆ [a1, a2]. Now
[a1, a2]rA = (a1, a2)rA is an open set in R, and so it is a countable disjoint union
of open intervals. Let S be the family of these open intervals, i.e. the components
of [a1, a2]rA. If I, J ∈ S, we say I < J if some (and so any) point of I is less than
some (and so any) point of J . Thus the ordering of the reals induce an ordering
of S. It is easy to see that this ordering on S is order-dense (because A is nowhere
dense and perfect), and without first or last point. Moreover S is countable. Let E
be the set of end-points of the intervals of S together with a1 and a2.

Similarly take T to be the component intervals of [b1, b2]rB, where b1 = inf B
and b2 = supB, and order T naturally to get another countable order-dense set
without first or last point. Let F be the set of end-points of the intervals of T

together with b1 and b2.
By Cantor’s theorem there is an order preserving bijection from S onto T. This

bijection naturally induces an order preserving bijection between E and F , thus E
and F are order-isomorphic. Now note that A is a Dedekind completion of E, and
B is a Dedekind completion of F , so A and B are order-isomorphic. �

Since the Cantor set is a nowhere-dense perfect compact subset of R, we have:

Corollary. Any nowhere-dense perfect compact subset of R is order isomorphic to
the Cantor set.

Since for any compact subset of R, the order topology coincides with the subspace
topology, we have:

Corollary 3. Any nowhere-dense perfect compact subset of R is homeomorphic to
the Cantor set.

Note A: The proof of the theorem shows that the order type of the Cantor set
(and thus of any nowhere-dense perfect compact subset of R) can be characterized
as the Dedekind completion of 1 + 2η + 1, where η is the order type of (Q, <).

Note B: Brouwer’s characterization of the Cantor space as the unique zero-
dimensional compact perfect metrizable space can be derived from this corollary.
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1.3. The Proof. Let X be any countable metrizable space without isolated points.
Then X has a countable basis consisting of clopen sets. To see this, let p ∈ X. Put
S(p, r) = {x : d(p, x) = r}. Then for any ε > 0, S(p, r) is empty for at least one
positive real r < ε, and for this r, the open ball of radius r centered at p is clopen.

Hence by Theorem 2 (Section 1.1):
X is homeomorphic to a dense-in-itself subset of the Cantor set.

Since the closure of a dense-in-itself subset of the Cantor set is a nowhere-dense
perfect compact subset of R, we get:

X densely embeds in a nowhere-dense perfect compact subset of R.
By Corollary 3 (Section 1.2):

X densely embeds in the Cantor set K.
By Corollary 1 (Section 1.1):

X is homeomorphic to a countable dense subset D of KrE,
where E is the countable set of “external endpoints” of the Cantor set.

Since D is a dense subset of KrE, every point of D is a two-sided limit point of
D, so the subspace topology on D coincides with the order topology on D. Hence:

X is homeomorphic to (D,<) with order topology.
Again because D is a countable dense subset of KrE, the linear order (D,<) is
countable, order-dense, and without endpoints. So by Cantor’s theorem (second
application!):

(D,<) is order isomorphic to (Q,<).
Finally it follows:

X is homeomorphic to (Q,<) with order topology.

2. Proof using the Alexandrov-Urysohn theorem

Definition. A topological space is nowhere compact if every compact subset has
empty interior.

The following fact is proved by a routine elementary topological argument:

Fact. If X is a subspace of a Hausdorff space Y , and both X and Y rX are dense
in Y , then X is nowhere compact.

Theorem (Alexandrov-Urysohn). A zero-dimensional nowhere compact separable
complete metric space is homeomorphic to RrQ, the subspace of irrationals in R.

We now give a proof of Sierpinski’s theorem using the above theorem of Alexan-
drov and Urysohn (which we do not prove here).

Proof. Let X = {xm : m ∈ N} be a countable metric space without isolated points.
We regard X as a subset of its metric completion (X∗, d).

For each m,n ∈ N there is rm,n > 0 with rm,n < 1/n and S(xm, rm,n) ∩X = Ø,
where S(p, r) = {x ∈ X∗ : d(p, x) = r}. Let H = X∗r∪m,n∈NS(xm, rm,n). Then
H is zero-dimensional by construction. Also H is a Gδ subset of X∗ containing
X, so H is completely metrizable (recall that a subset of a complete metric space
is completely metrizable iff it is a Gδ), and of course H is separable and without
isolated points. Thus X is a meager subset of H and by the Baire category theorem,
H rX is dense in H. Now choose a countable dense subset D of H rX, and put
Y = H rD. Again, Y is a Gδ subset of H containing X, so Y is a separable
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completely metrizable zero-dimensional space containing X. Moreover, both Y and
H rY = D are dense in H, so Y is nowhere compact. Hence by the Alexandrov-
Urysohn theorem, Y is homeomorphic to the irrationals.

It follows that X is homeomorphic to a dense subspace of the irrationals, and
hence to a dense subspace of R.

But a countable dense set in R is homeomorphic to Q by Cantor’s Theorem. �

3. A direct back-and-forth argument

Theorem. Let X and Y be T0 spaces without isolated points and each possessing
a countable basis consisting of clopen sets. Let A and B be a countable dense
subsets of X and Y respectively. Then there is a bijection f : A → B which is
a homeomorphism from A onto B. If in addition Y is compact, then f extends
uniquely to a relative homeomorphism f∗ from X into Y . If X is also compact
then f∗ is a homeomorphism of X onto Y .

Proof. Assume that S is a countable algebra (field) of clopen subsets of X which
forms a basis for the topology of X. Similarly, let T be a countable algebra (field)
of clopen subsets of Y which forms a basis for the topology of Y .

By a partition P of a set E we mean a collection of non-empty disjoint subsets
of E whose union is E. If P is a partition of E, and x ∈ E, then P [x] denotes the
unique member of P containing x. A subset C of E is a choice set for the partition
P if P = {P [x] : x ∈ C}, and P [x] 6= P [y] for any distinct x, y ∈ C.

By a condition we mean a triple (P,Q, f) satisfying:

(a) P ⊆ S is a finite partition of X (by clopen sets from S),
(b) Q ⊆ T is a finite partition of Y (by clopen sets from T),
(c) f is a finite function such that dom(f) ⊆ A and ran(f) ⊆ B,
(d) dom(f) is a choice set for P , and
(e) ran(f) is a choice set for Q.

We say that a condition (P2, Q2, f2) extends a condition (P1, Q1, f1) if P2 refines P1,
Q2 refines Q1, f2 ⊇ f1, and for any x, a ∈ dom(f2), x ∈ P1[a] iff f2[x] ∈ Q1[f2(a)].

It is easily seen that this relation is reflexive, antisymmetric, and transitive.

Lemma. Given a condition (P1, Q1, f1) and a ∈ A (resp. b ∈ B), there is a condi-
tion (P2, Q2, f2) extending (P1, Q1, f1) such that a ∈ dom(f2) (resp. b ∈ ran(f2)).
Given a condition (P1, Q1, f1) and a set S ∈ S (resp. T ∈ T) there is a condition
(P2, Q2, f2) extending (P1, Q1, f1) such that S is a union of sets in P2 (resp. T is a
union of sets in Q2).

The proof of the lemma is left as an exercise.

Now enumerate S = {Sn : n ∈ N}, T = {Tn : n ∈ N}, A = {an : n ∈ N}, and
B = {bn : n ∈ N}. Let P1 = {X}, Q1 = {Y }, and f1 = {〈a, b〉}, where a ∈ A
and b ∈ B are fixed arbitrarily. Given a condition (Pn, Qn, fn), use the lemma to
inductively choose a condition (Pn+1, Qn+1, fn+1) extending (Pn, Qn, fn) such that
Sn is a union of sets in Pn+1, Tn is a union of sets in Qn+1, an ∈ dom(fn+1), and
bn ∈ ran(fn+1). Finally let f = ∪nfn.

By construction, f : A → B is a bijection. Moreover, for any S ∈ S there is a
unique T ∈ T such that for any a ∈ A, a ∈ S iff f(a) ∈ T , and similarly for any
T ∈ T there is S ∈ S such that for any a ∈ A, a ∈ S iff f(a) ∈ T . This defines
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a bijection H : S → T with the property that for any S ∈ S and a ∈ A, a ∈ S iff
f(a) ∈ H(S). (H can be seen to be a set-algebra isomorphism.)

It follows that f is a homeomorphism of A onto B.
If Y is compact, then given any x ∈ X, let Vx = {H(S) : x ∈ S, S ∈ S}. Then

Vx is a filter of clopen subsets of Y with the property that for any T ∈ T, either
T ∈ Vx or Y rT ∈ Vx. By this property and compactness of Y , ∩Vx is a singleton
{y}. Set f∗(x) = y. Then f∗ : X → Y is an embedding.

If X is also compact, then the image of f∗ is a compact subset of Y containing
the dense set B, so f∗ must be onto, and hence a homeomorphism of X onto Y . �

The theorem immediately implies Brouwer’s characterization of the Cantor set,
and more:

Corollary (Brouwer). Any two second countable compact zero-dimensional spaces
without isolated points are homeomorphic. In fact, they are countable dense ho-
mogeneous, meaning that given countable dense subsets of the two spaces, a home-
omorphism can be found which maps one dense subset onto the other.

Corollary (Brouwer). The Cantor set is the topologically unique second countable
compact zero-dimensional space without isolated points. Moreover, it is countable
dense homogeneous.
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