COUNTABLE METRIC SPACES WITHOUT ISOLATED POINTS

ABHIJIT DASGUPTA

Theorem (Sierpinski, 1914-1915, 1920). Any countable metrizable space without isolated points is homeomorphic to \mathbb{Q}, the rationals with the order topology (same as \mathbb{Q} as a subspace of \mathbb{R} with usual topology, or as \mathbb{Q} with the metric topology).

The theorem is remarkable, and gives some apparently counter-intuitive examples of spaces homeomorphic to the usual \mathbb{Q}. Consider the "Sorgenfrey topology on \mathbb{Q}," which has the collection $\{(p, q]: p, q \in \mathbb{Q}\}$ as a base for its topology. This topology on \mathbb{Q} is strictly finer than, and yet homeomorphic to, the usual topology of \mathbb{Q}. Another example is $\mathbb{Q} \times \mathbb{Q}$ as a subspace of the Euclidean plane.

In this article, we present three proofs of Sierpinski's theorem.

1. Order-theoretic proof

This proof is fairly elementary in the sense that no "big guns" are used (such as Brouwer's characterization of the Cantor space or the Alexandrov-Urysohn characterization of the irrationals), and no new back-and-forth method is used, but the main tool is:

Theorem (Cantor's Theorem). Any countable linear order which is order dense (meaning $x<y$ implies there is z such that $x<z<y$), and has no first or last element is order isomorphic to $(\mathbb{Q},<)$.

This theorem will be used more than once.
1.1. Easy properties of $\mathbf{2}^{\mathbb{N}}=\mathbb{Z}_{2}^{\mathbb{N}}$. Let $\mathbf{2}=\mathbb{Z}_{2}=\{0,1\}$ be the additive group of integers modulo 2 with the discrete topology, and let $\mathbf{2}^{\mathbb{N}}$ be its countable infinite power. Then $2^{\mathbb{N}}$ under pointwise addition is an uncountable abelian compact topological group.
Fact. If A and B are countable subsets of $\mathbf{2}^{\mathbb{N}}$, then for some $p \in \mathbf{2}^{\mathbb{N}}, p+A$ is disjoint from B, where $p+A$ is the p-translate of $A=$ the set $\{p+x: x \in A\}$.
Proof. (Works in any uncountable group.) The set $C=\{b-a: b \in B$ and $a \in A\}$ is countable as A and B are both countable, so just pick any $p \in \mathbf{2}^{\mathbb{N}} \backslash C$.

Fact. $2^{\mathbb{N}}$ is homeomorphic to the Cantor set K.
Proof. Map a binary infinite sequence $p \in \mathbf{2}^{\mathbb{N}}$ to the real number

$$
\sum_{n=1}^{\infty} \frac{2 p[n]}{3^{n}}
$$

This mapping is seen to be continuous bijection, and so a homeomorphism, as $\mathbf{2}^{\mathbb{N}}$ is compact and K is Hausdorff.

Since for any fixed $p \in \mathbf{2}^{\mathbb{N}}$, the "translation" map $x \rightarrow p+x$ is an autohomeomorphism of $\mathbf{2}^{\mathbb{N}}$, the above two Facts imply:
Corollary 1. If E is a countable subset of the Cantor set K, then any countable dense subset of K is homeomorphic to a countable dense subset of $K \backslash E$.

Theorem 2. Every T_{0} space Y with a countable basis consisting of clopen sets is homeomorphic to a subset of the Cantor set.
Proof. Fix a countable basis $\left\{C_{n}: n \in \mathbb{N}\right\}$ of clopen sets, and let f_{n} be the characteristic function of C_{n}. Then for any $n, f_{n}: Y \rightarrow\{0,1\}=\mathbf{2}$ is continuous. Define $f: Y \rightarrow \mathbf{2}^{\mathbb{N}}$ by $f(x)[n]=f_{n}(x)$. Thus f is the unique map for which $\pi_{n} \circ f=f_{n}$ for all n, where $\pi_{n}: \mathbf{2}^{\mathbb{N}} \rightarrow\{0,1\}$ is the n-th projection map. Since the family $\left\langle f_{n}\right\rangle$ separates points, and also separates points-and-closed-sets, f is an embedding of Y into $2^{\mathbb{N}}$. The result now follows as $\mathbf{2}^{\mathbb{N}}$ is homeomorphic to the Cantor set.
1.2. Order topology of \mathbf{R} and the Cantor set. First we review some basic facts about order topology.

Let $(X,<)$ be a linear order, and A be a subset of X.
Definition. A point $p \in X$ is an upper limit point of A if p is not the first element of X and for all $x \in X, x<p$ implies there is $a \in A$ such that $x<a<p$.

Similarly define lower limit point, and call a point a two-sided limit point of A if it is both an upper limit point and a lower limit point of A.

Definition. X is a Dedekind completion of A if X is order-complete (has no Dedekind gaps), and every point of $X \backslash A$ is a two-sided limit point of A.
Fact (Uniqueness of Dedekind completion). If X is a Dedekind completion of A, and Y is a Dedekind completion of B, and A and B are order isomorphic, then X and Y are order isomorphic.

Proof. If $f: A \rightarrow B$ is an order isomorphism, then for any $x \in X \backslash A, x$ determines a Dedekind gap (L, U) in A, and so $(f[L], f[U])$ is a Dedekind gap in B. But Y is a Dedekind completion of B, so there is a unique $y \in Y$ such that $f[L]<y<$ $f[U]$. Set $f^{*}(x)=y$. The map f^{*} thus defined is an extension of f and an order isomorphism of X onto Y.

Example. \mathbb{R} is a Dedekind completion of \mathbb{Q}.
Example. The points of the Cantor set K can be divided into two disjoint classes:
(a) The countable set E of "external" points of K consists of the points 0,1 , and the endpoints of all open intervals removed in the construction of K.
(b) The points of K which are two-sided limit points of $K=K \backslash E=\{x \in K$: for all $\epsilon>0$, there are $a, b \in K$ such that $x-\epsilon<a<x<b<x+\epsilon\}$.
Any $x \in K$ has a ternary expansion not containing the digit 1 , and $x \in E$ iff this ternary expansion is eventually constant (0 or 2). It is not hard to see that for every point $x \in K \backslash E, x$ is a two-sided limit point of E (and x is also a two-sided limit point of $K \backslash E)$. Thus K is a Dedekind-completion of $E \subseteq K$. In the theorem below we will see that this can be generalized to any nowhere-dense perfect compact subset of \mathbb{R}.

Let X be a linear order with the order topology.
If Y is a subset of X, there are two natural topologies on Y :
(a) The relative topology on Y as a topological subspace of X, and
(b) the order topology on Y as a suborder of X.

Fact. The order topology on Y is weaker than the subspace topology.
Example. Let $X=(R,<)$ and $Y=[0,1) \cup[2,3]$. Then the order topology on Y is strictly weaker than the subspace topology on $Y ; Y$ with the order topology is homeomorphic to $[0,1]$, but Y with the subspace topology is neither connected nor compact.

Under certain conditions the order topology on a subset coincides with the subspace topology:
Fact. Let X be a linear order with the order topology. For a subset Y of X, if either Y is compact in the subspace topology, or if every point of Y is a two-sided limit point of Y, then the order topology on Y coincides with the subspace topology.

Theorem. All nowhere-dense perfect compact subsets of \mathbb{R} are order-isomorphic.
Proof. Let A and B be nowhere-dense perfect compact subsets of \mathbb{R}, and let $a_{1}=$ $\inf A, a_{2}=\sup A$. Then $a_{1}, a_{2} \in A\left(\right.$ as A is compact), and $A \subseteq\left[a_{1}, a_{2}\right]$. Now $\left[a_{1}, a_{2}\right] \backslash A=\left(a_{1}, a_{2}\right) \backslash A$ is an open set in \mathbb{R}, and so it is a countable disjoint union of open intervals. Let \mathcal{S} be the family of these open intervals, i.e. the components of $\left[a_{1}, a_{2}\right] \backslash A$. If $I, J \in \mathcal{S}$, we say $I<J$ if some (and so any) point of I is less than some (and so any) point of J. Thus the ordering of the reals induce an ordering of \mathcal{S}. It is easy to see that this ordering on \mathcal{S} is order-dense (because A is nowhere dense and perfect), and without first or last point. Moreover \mathcal{S} is countable. Let E be the set of end-points of the intervals of \mathcal{S} together with a_{1} and a_{2}.

Similarly take \mathcal{T} to be the component intervals of $\left[b_{1}, b_{2}\right] \backslash B$, where $b_{1}=\inf B$ and $b_{2}=\sup B$, and order \mathcal{T} naturally to get another countable order-dense set without first or last point. Let F be the set of end-points of the intervals of \mathcal{T} together with b_{1} and b_{2}.

By Cantor's theorem there is an order preserving bijection from \mathcal{S} onto \mathcal{T}. This bijection naturally induces an order preserving bijection between E and F, thus E and F are order-isomorphic. Now note that A is a Dedekind completion of E, and B is a Dedekind completion of F, so A and B are order-isomorphic.

Since the Cantor set is a nowhere-dense perfect compact subset of \mathbb{R}, we have:
Corollary. Any nowhere-dense perfect compact subset of \mathbb{R} is order isomorphic to the Cantor set.

Since for any compact subset of \mathbb{R}, the order topology coincides with the subspace topology, we have:

Corollary 3. Any nowhere-dense perfect compact subset of \mathbb{R} is homeomorphic to the Cantor set.

Note A: The proof of the theorem shows that the order type of the Cantor set (and thus of any nowhere-dense perfect compact subset of \mathbb{R}) can be characterized as the Dedekind completion of $1+2 \eta+1$, where η is the order type of $(\mathbb{Q},<)$.

Note B: Brouwer's characterization of the Cantor space as the unique zerodimensional compact perfect metrizable space can be derived from this corollary.
1.3. The Proof. Let X be any countable metrizable space without isolated points. Then X has a countable basis consisting of clopen sets. To see this, let $p \in X$. Put $S(p, r)=\{x: d(p, x)=r\}$. Then for any $\epsilon>0, S(p, r)$ is empty for at least one positive real $r<\epsilon$, and for this r, the open ball of radius r centered at p is clopen.

Hence by Theorem 2 (Section 1.1):
X is homeomorphic to a dense-in-itself subset of the Cantor set.
Since the closure of a dense-in-itself subset of the Cantor set is a nowhere-dense perfect compact subset of R , we get:
X densely embeds in a nowhere-dense perfect compact subset of \mathbb{R}.
By Corollary 3 (Section 1.2):
X densely embeds in the Cantor set K.
By Corollary 1 (Section 1.1):
X is homeomorphic to a countable dense subset D of $K \backslash E$,
where E is the countable set of "external endpoints" of the Cantor set.
Since D is a dense subset of $K \backslash E$, every point of D is a two-sided limit point of D, so the subspace topology on D coincides with the order topology on D. Hence:
X is homeomorphic to $(D,<)$ with order topology.
Again because D is a countable dense subset of $K \backslash E$, the linear order $(D,<)$ is countable, order-dense, and without endpoints. So by Cantor's theorem (second application!):
$(D,<)$ is order isomorphic to $(Q,<)$.
Finally it follows:
X is homeomorphic to $(Q,<)$ with order topology.

2. Proof using the Alexandrov-Urysohn theorem

Definition. A topological space is nowhere compact if every compact subset has empty interior.

The following fact is proved by a routine elementary topological argument:
Fact. If X is a subspace of a Hausdorff space Y, and both X and $Y \backslash X$ are dense in Y, then X is nowhere compact.
Theorem (Alexandrov-Urysohn). A zero-dimensional nowhere compact separable complete metric space is homeomorphic to $\mathbb{R} \backslash \mathbb{Q}$, the subspace of irrationals in \mathbb{R}.

We now give a proof of Sierpinski's theorem using the above theorem of Alexandrov and Urysohn (which we do not prove here).
Proof. Let $X=\left\{x_{m}: m \in \mathbb{N}\right\}$ be a countable metric space without isolated points. We regard X as a subset of its metric completion $\left(X^{*}, d\right)$.

For each $m, n \in \mathbb{N}$ there is $r_{m, n}>0$ with $r_{m, n}<1 / n$ and $S\left(x_{m}, r_{m, n}\right) \cap X=\emptyset$, where $S(p, r)=\left\{x \in X^{*}: d(p, x)=r\right\}$. Let $H=X^{*} \backslash \cup_{m, n \in \mathbb{N}} S\left(x_{m}, r_{m, n}\right)$. Then H is zero-dimensional by construction. Also H is a \mathcal{G}_{δ} subset of X^{*} containing X, so H is completely metrizable (recall that a subset of a complete metric space is completely metrizable iff it is a \mathcal{G}_{δ}), and of course H is separable and without isolated points. Thus X is a meager subset of H and by the Baire category theorem, $H \backslash X$ is dense in H. Now choose a countable dense subset D of $H \backslash X$, and put $Y=H \backslash D$. Again, Y is a \mathcal{G}_{δ} subset of H containing X, so Y is a separable
completely metrizable zero-dimensional space containing X. Moreover, both Y and $H \backslash Y=D$ are dense in H, so Y is nowhere compact. Hence by the AlexandrovUrysohn theorem, Y is homeomorphic to the irrationals.

It follows that X is homeomorphic to a dense subspace of the irrationals, and hence to a dense subspace of \mathbb{R}.

But a countable dense set in \mathbb{R} is homeomorphic to \mathbb{Q} by Cantor's Theorem.

3. A DIRECT BACK-AND-FORTH ARGUMENT

Theorem. Let X and Y be T_{0} spaces without isolated points and each possessing a countable basis consisting of clopen sets. Let A and B be a countable dense subsets of X and Y respectively. Then there is a bijection $f: A \rightarrow B$ which is a homeomorphism from A onto B. If in addition Y is compact, then f extends uniquely to a relative homeomorphism f^{*} from X into Y. If X is also compact then f^{*} is a homeomorphism of X onto Y.

Proof. Assume that \mathcal{S} is a countable algebra (field) of clopen subsets of X which forms a basis for the topology of X. Similarly, let \mathcal{T} be a countable algebra (field) of clopen subsets of Y which forms a basis for the topology of Y.

By a partition P of a set E we mean a collection of non-empty disjoint subsets of E whose union is E. If P is a partition of E, and $x \in E$, then $P[x]$ denotes the unique member of P containing x. A subset C of E is a choice set for the partition P if $P=\{P[x]: x \in C\}$, and $P[x] \neq P[y]$ for any distinct $x, y \in C$.

By a condition we mean a triple (P, Q, f) satisfying:
(a) $P \subseteq \mathcal{S}$ is a finite partition of X (by clopen sets from \mathcal{S}),
(b) $Q \subseteq \mathcal{T}$ is a finite partition of Y (by clopen sets from \mathcal{T}),
(c) f is a finite function such that $\operatorname{dom}(f) \subseteq A$ and $\operatorname{ran}(f) \subseteq B$,
(d) $\operatorname{dom}(f)$ is a choice set for P, and
(e) $\operatorname{ran}(f)$ is a choice set for Q.

We say that a condition $\left(P_{2}, Q_{2}, f_{2}\right)$ extends a condition $\left(P_{1}, Q_{1}, f_{1}\right)$ if P_{2} refines P_{1}, Q_{2} refines $Q_{1}, f_{2} \supseteq f_{1}$, and for any $x, a \in \operatorname{dom}\left(f_{2}\right), x \in P_{1}[a]$ iff $f_{2}[x] \in Q_{1}\left[f_{2}(a)\right]$. It is easily seen that this relation is reflexive, antisymmetric, and transitive.

Lemma. Given a condition $\left(P_{1}, Q_{1}, f_{1}\right)$ and $a \in A$ (resp. $b \in B$), there is a condition $\left(P_{2}, Q_{2}, f_{2}\right)$ extending $\left(P_{1}, Q_{1}, f_{1}\right)$ such that $a \in \operatorname{dom}\left(f_{2}\right)$ (resp. $b \in \operatorname{ran}\left(f_{2}\right)$). Given a condition $\left(P_{1}, Q_{1}, f_{1}\right)$ and a set $S \in \mathcal{S}$ (resp. $\left.T \in \mathcal{T}\right)$ there is a condition $\left(P_{2}, Q_{2}, f_{2}\right)$ extending $\left(P_{1}, Q_{1}, f_{1}\right)$ such that S is a union of sets in P_{2} (resp. T is a union of sets in Q_{2}).

The proof of the lemma is left as an exercise.
Now enumerate $\mathcal{S}=\left\{S_{n}: n \in \mathbb{N}\right\}, \mathcal{T}=\left\{T_{n}: n \in \mathbb{N}\right\}, A=\left\{a_{n}: n \in \mathbb{N}\right\}$, and $B=\left\{b_{n}: n \in \mathbb{N}\right\}$. Let $P_{1}=\{X\}, Q_{1}=\{Y\}$, and $f_{1}=\{\langle a, b\rangle\}$, where $a \in A$ and $b \in B$ are fixed arbitrarily. Given a condition $\left(P_{n}, Q_{n}, f_{n}\right)$, use the lemma to inductively choose a condition $\left(P_{n+1}, Q_{n+1}, f_{n+1}\right)$ extending $\left(P_{n}, Q_{n}, f_{n}\right)$ such that S_{n} is a union of sets in P_{n+1}, T_{n} is a union of sets in $Q_{n+1}, a_{n} \in \operatorname{dom}\left(f_{n+1}\right)$, and $b_{n} \in \operatorname{ran}\left(f_{n+1}\right)$. Finally let $f=\cup_{n} f_{n}$.

By construction, $f: A \rightarrow B$ is a bijection. Moreover, for any $S \in \mathcal{S}$ there is a unique $T \in \mathcal{T}$ such that for any $a \in A, a \in S$ iff $f(a) \in T$, and similarly for any $T \in \mathcal{T}$ there is $S \in \mathcal{S}$ such that for any $a \in A, a \in S$ iff $f(a) \in T$. This defines
a bijection $H: \mathcal{S} \rightarrow \mathcal{T}$ with the property that for any $S \in \mathcal{S}$ and $a \in A, a \in S$ iff $f(a) \in H(S)$. (H can be seen to be a set-algebra isomorphism.)

It follows that f is a homeomorphism of A onto B.
If Y is compact, then given any $x \in X$, let $\mathcal{V}_{x}=\{H(S): x \in S, S \in \mathcal{S}\}$. Then ν_{x} is a filter of clopen subsets of Y with the property that for any $T \in \mathcal{T}$, either $T \in \mathcal{V}_{x}$ or $Y \backslash T \in \mathcal{V}_{x}$. By this property and compactness of $Y, \cap \mathcal{V}_{x}$ is a singleton $\{y\}$. Set $f^{*}(x)=y$. Then $f^{*}: X \rightarrow Y$ is an embedding.

If X is also compact, then the image of f^{*} is a compact subset of Y containing the dense set B, so f^{*} must be onto, and hence a homeomorphism of X onto Y.

The theorem immediately implies Brouwer's characterization of the Cantor set, and more:

Corollary (Brouwer). Any two second countable compact zero-dimensional spaces without isolated points are homeomorphic. In fact, they are countable dense homogeneous, meaning that given countable dense subsets of the two spaces, a homeomorphism can be found which maps one dense subset onto the other.

Corollary (Brouwer). The Cantor set is the topologically unique second countable compact zero-dimensional space without isolated points. Moreover, it is countable dense homogeneous.

Date: June 25, 2005.
(c) 2005 by Topology Atlas. All rights reserved.

