
ERRATA LIST FOR SET THEORY

LAST UPDATED: 22 JANUARY 2016

The following is the list of errata for the book Set Theory: With an Introduction
to Real Point Sets, by Abhijit Dasgupta, Birkhäuser/Springer, 2014 (ISBN 978-1-
4614-8853-8, hardcover).

• p. ix: Add the following sentence at the end of the top paragraph: “In par-
ticular, the postscript chapters fall outside the main development followed
in the book.

• p. 9: Line before Problem 16: “xRu and uRy” should be “xRu and uSy”.

• pp. 42–43: Error in the proof of Theorem 146:

The author wishes to thank Dr. Christoph Lamm for noticing this error.
The rigorous definition of addition given in Section 2.10 (using primitive
recursion) is based ultimately on Theorem 146 (Basic Principle of Recursive
Definition). The proof of Theorem 146 assumes that the ordering relation
< on N has already been defined. But the definition of ordering on N given
earlier (Definition 61) had presupposed addition itself, resulting in circular
reasoning.

The proof of Theorem 146 can be corrected by defining the set In of the
first n natural numbers without presupposing the ordering relation <. A
complete replacement for pages 42–43 with this correction to the proof of
Theorem 146 appears at the end of this errata list.

• p. 49: After the figure, remove the extra space (indentation) preceding the
phrase “if both legs . . . ”.

• p. 60: Top line of text: Two union symbols after {0} are missing: In each
case, “{0}{” should become “{0} ∪ {”.

• p. 83: Item 2 in “Informal discussion”: “. . . called bounded if we have
−a < x < a for some real number a” should be changed to: “. . . called
bounded if there is a real number a such that −a < x < a for all x ∈ E.”

• p. 92: Paragraph after Problem 290, second line: “congruence and similar-
ity mappings” should be “congruence and similarity of geometric figures”.

• p. 97: Problem 313: 1
2 (m+n)(m+n−1) +m should be 1

2 (m+n−2)(m+
n− 1) +m, and similarly, the displayed formula should become

〈m,n〉 7→ (m+ n− 2)(m+ n− 1)

2
+m

• p. 111: After Theorem 350, add the following sentence: “By Theorem 350,
the cardinal comparison symbols 6 and ≤ become equivalent, and so we
can (and henceforth will) use them interchangeably.”
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• p. 124: Problem 418, last clause in the casewise definition for Φ: Instead
of x it should be h(x).

• p. 166: The displayed sentence “The Suslin Problem. Is a CCC . . . ” is
all in italics, but the first three words should be upright bold, as in: “The
Suslin Problem. Is a CCC . . . ”.

• p. 207: In Theorem 714 part 1, change “but X(α) ( X(µ) for α < µ” to
“but X(α) ) X(µ) for all α < µ”.

• p. 249: Proof (of Theorem 877, Outline): In 5th line of the proof, “with
(c, d) ∩ Eα 6= ∅ . . . ” should be “with (c, d) ∩ Eα = ∅ . . . ”.

• p. 315: Section 17.2, third paragraph, line 3: “homeomorphism of F1 onto
itself which interchanges . . . ” should be “homeomorphism of K1 onto itself
which interchanges . . . ”.

• p. 323: In Problem 1126, Hint: “BE := ∪n∈EAnr ∪n 6∈E An . . . ” should
be “BE := ∩n∈EAnr ∪n6∈E An . . . ”

• p. 346: Beginning of 4th line of second paragraph of the proof of Theo-
rem 1180: “with µ(GrA) < µ(A)” should be “with µ(GrB) < µ(A)”.

• p. 347: Definition 1185: p 6= q should be x 6= y.

• p. 420: End of proof of Proposition 1335: “≥ m∗(A) +m∗(B)” should be
“≥ m∗(A) +m∗(B)− ε”.

• p. 431:
– Change index entry “absolutism, 67” to “absolutism, 67, 70”
– Under the index entry for “axiom of”:

∗ Change subentry “choice, 13, 77, 90–94, 208–210” to “choice,
13, 90–94, 208–210, 224–225”

∗ Change subentry “dependent choice (DC), 77, 101” to “depen-
dent choice (DC), 101”

• p. 432:
– Under the index entry for “axiom of”:

∗ Change subentry “foundation, 393–395, 421” to “foundation,
393–394, 421”

∗ Change subentry “replacement, 376–377, 421” to “replacement,
376–377, 409, 421”

– Change index entry “Bernstein sets, 298–299, 335, 345–346, 408” to
“Bernstein sets, 298–299, 335, 346, 402, 408”



42 2 The Dedekind-Peano Axioms

2.10 Recursive Definitions*

Recall that we had “defined” addition of natural numbers by the following recursion
equations:

m + 1 := S(m), and m + S(n) := S(m + n).

But this is not an explicit definition! We took it for granted (as was done in the work
of Peano) that a two-place function + (the mapping (m,n) 7→ m + n) satisfying the
above equations exists, without giving any rigorous justification for its existence.
Similarly, multiplication of natural numbers was “defined” by recursion equations
without proper justification.

Dedekind introduced a general method, known as primitive recursion, which pro-
vides such justification. It assures the existence and uniqueness of functions which
are defined implicitly using recursion equations having forms similar to the ones for
addition and multiplication.

We will formulate and prove a general version of Dedekind’s principle of recur-
sive definition, from which the existence and uniqueness for the sum and product
functions can be immediately derived.

Principles of Recursive Definition

The following Basic Principle of Recursive Definition is perhaps the simplest yet
very useful result for defining functions recursively.

Theorem 146 (Basic Principle of Recursive Definition). If Y is a set, a ∈ Y, and
h : Y → Y, then there is a unique f : N→ Y such that

f (1) = a, and f (S(n)) = h( f (n)) for all n ∈ N.

Informally, this says that given a ∈ Y and h : Y → Y , we can form the infinite se-
quence 〈a,h(a),h(h(a)),. . . 〉.
Proof. The uniqueness of the function f can be established by an easy and routine
induction, so let us prove existence.

A subset I of N will be called an initial set if for all k ∈ N, if S(k) ∈ I then k ∈ I.
By routine induction, we can establish the following:

• {1} is an initial set, and every non-empty initial set contains 1 as a member.
• If I is an initial set with k ∈ I then I ∪ {S(k)} is also an initial set.
• For each n ∈ N, there is a unique initial set I such that n ∈ I but S(n) < I.

Let In denote the unique initial set containing n but not S(n). It follows that I1 = {1},
and IS (n) = In ∪ {S(n)} for all n ∈ N. (Informally, In = {1,2,. . . ,n}, the set of first n
natural numbers.) The proof will use functions u : In → Y having domain In .

Let us say that a function u is partially h-recursive with domain In if u : In → Y ,
u(1) = a, and u(S(k)) = h(u(k)) for all k such that S(k) ∈ In .
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We first prove by induction that for every n ∈ N there is a unique partially h-
recursive u with domain In .

Basis step (n = 1): Let v : {1} → Y be defined by setting v(1) = a. Then v is par-
tially h-recursive with domain I1. Moreover, if u,u′ : I1→Y are partially h-recursive
functions with domain I1, then u(1) = a = u′(1), so u = u′ since 1 is the only element
in their domain I1 = {1}. So there is a unique partially h-recursive v with domain I1,
establishing the basis step.

Induction step: Suppose that n ∈ N is such that there is a unique partially h-
recursive v with domain In (induction hypothesis). We fix this v for the rest of this
step, and define w : IS (n)→Y by setting w(k) := v(k) for k ∈ In and w(k) := h(v(n))
if k = S(n). Then w is easily seen to be partially h-recursive with domain IS (n) .
Moreover, if u,u′ : IS (n) → Y are partially h-recursive with domain IS (n) , then the
restrictions u↾In and u′ ↾In are partially h-recursive with domain In , so they must be
identical by induction hypothesis, i.e. u(k) = u′(k) for k ∈ In . In particular, u(n) =
u′(n), so u(S(n)) = h(u(n)) = h(u′(n)) = u′(S(n)), which gives u = u′. Hence there
is a unique partially h-recursive w with domain IS (n) , which finishes the induction
step.

Thus for each n there is a unique partially h-recursive function with domain In ;
let us denote this function by un .

Now define f : N→ Y by setting:

f (n) := un (n).

First, f (1) = a since u1(1) = a. Next, the restriction of uS (n) to In equals un (by
uniqueness, since the restriction is partially h-recursive), so uS (n) (n) = un (n). Hence
f (S(n)) = uS (n) (S(n)) = h(uS (n) (n)) = h(un (n)) = h( f (n)). Thus f satisfies the
recursion equations of the theorem. ⊓⊔
To handle functions of multiple variables, the following theorem is used.

Theorem 147 (General Principle of Recursive Definition). For any g : X→Y and
h : X ×N ×Y →Y, there is a unique function f : X ×N→Y such that for all x ∈ X
and n ∈ N:

f (x,1) = g(x) and f (x,S(n)) = h(x,n, f (x,n)).

Here f is being defined by recursion on the second variable n, that is, n is the
variable of recursion ranging over N, while x is a parameter ranging over the set X .
This is the most general form of recursive definition, where both the parameters (in
X) and the values (in Y ) come from arbitrary sets.

Proof. The proof is essentially the same as that of Theorem 146, since the additional
parameter does not play any significant role in the recursion. The details are left as
an exercise for the reader. ⊓⊔
Theorem 148 (Course of Values Recursion). Let Y be a non-empty set and Y ∗
denote the set of all finite sequences (strings) of elements from Y. Given any
G : Y ∗ → Y there is a unique f : N→ Y such that


