
MATHEMATICAL FOUNDATIONS
OF RANDOMNESS

Abhijit Dasgupta

This article is dedicated to the centenary of the Borel Strong Law.

1 INTRODUCTION

1.1 A random blackbox?

Imagine a “blackbox” which supposedly produces its outcomes “randomly” ac-
cording to some fixed finite probability distribution.

BLACKBOX → Outcome

Thus there are a finite number of possible outcomes, say ω1, ω2, . . . , ωn, and each
outcome ωi has a fixed non-trivial probability pi, so that P (ωi) = pi with 0 <
pi < 1 for i = 1, 2, . . . , n, and

∑n
i=1 pi = 1. The outcomes may be generated either

automatically from a continuously running process, or on demand, say by pressing
a button on the blackbox.

We think of this as an abstract model representing a process, a machine, or
an experiment. Familiar examples are the flip of a coin, the turn of a casino
gambling wheel, the roll of an “electronic die” on a handheld video game device,
the snapshot of weather data, the time between two successive clicks of a Geiger
counter detecting radioactive decay, the stock market index value, etc.

Here, we approach the problem in a purely extensional way. This means that
except for the given knowledge of the probability values of for each possible out-
come, we are only able to observe the outcomes, and do not have any access to, or
information about, the internal workings of the machine. Hence the term blackbox.

Gambling houses and forecasters of weather and stock market as well as philoso-
phers of probability and statistics have found the following question to be of con-
siderable interest.

Question A. Is the blackbox a random device? Does it produce its
outcomes randomly (while obeying a fixed probability distribution)?

Handbook of the Philosophy of Science. Volume 7: Philosophy of Statistics.
Volume editors: Prasanta S. Bandyopadhyay and Malcolm R. Forster. General Editors: Dov M.
Gabbay, Paul Thagard and John Woods.
c© 2010 Elsevier BV. All rights reserved.



2 Abhijit Dasgupta

1.2 Sequences

We cannot hope to answer the last question by observing a single outcome of the
blackbox. In fact, no finite amount of observation of outcomes can fully confirm
that a process is random (or not). On the other hand, by repeating the process a
sufficiently large number of times and observing the resulting sequence of outcomes,
we may hope to gain enough information for answering the question with a desired
level of confidence. (Such a sequence is denoted by 〈x1, x2, . . . , xk, . . . 〉, where each
xk, the k-th term of the sequence, equals one of the outcome values ω1, . . . , ωn.)

Given a sequence of outcomes of the blackbox, we want to determine whether or
not it was produced randomly. Our extensional approach means that other than
a knowledge of the underlying probability distribution for the possible outcome
values, we only have the completed sequence of outcomes available, with all in-
formation about its origination permanently removed, so the answer must depend
solely on the sequence itself and not on how it was produced. This necessitates
the consideration of a different but more precise question:

Question B. When is a given sequence of outcomes random (relative
to a fixed probability distribution for the outcome values)?

This article deals entirely with this last question (Question B, randomness of
sequences), and not with the earlier question (Question A, randomness of pro-
cesses). It is one of the fundamental questions in the philosophy of probability
and statistics. The longer the sequence, the more information we have for deter-
mining if it is random or not. And in the ideal case, the sequences will be infinite
sequences. We will consider both cases — finite and infinite sequences — of the
question in detail.

It was von Mises who first treated this question rigorously (for infinite se-
quences), and considered its answer to be the very foundation of probability, known
as the frequentist interpretation of probability.

1.3 Pseudo-randomness: A Galilean Dialogue

In his celebrated work Gödel, Escher, Bach, Douglas Hofstadter quotes the fol-
lowing “beautiful and memorable passage” from Are Quanta Real? — a Galilean
Dialogue by J. M. Jauch [Jauch, 1990]:

Salviati: Suppose I give you two sequences of numbers, such as

7 8 5 3 9 8 1 6 3 3 9 7 4 4 8 3 0 9 6 1 5 6 6 0 8 4 . . .

and

1, −1/3, +1/5, −1/7, +1/9, −1/11, +1/13, −1/15, . . .

If I asked you, Simplicio, what the next number of the first sequence is, what
would you say?
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Simplicio: I could not tell you. I think it is a random sequence and that there is
no law in it.

Salviati: And for the second sequence?

Simplicio: That would be easy. It must be +1/17.

Salviati: Right. But what would you say if I told you that the first sequence is
also constructed by a law and this law is in fact identical with the one you
have just discovered for the second sequence?

Simplicio: This does not seem probable to me.

Salviati: But it is indeed so, since the first sequence is simply the beginning of
the decimal fraction [expansion] of the sum of the second. Its value is π/4.

Simplicio: You are full of such mathematical tricks . . .

The dialogue illustrates an aspect (among many) of the problem of defining
randomness for sequences. An apparently random sequence of digits may really
be pseudo-random: While it may appear to be “statistically random” and unpre-
dictable, there may be a (hidden) rule or arithmetical method for generating the
entire infinite sequence purely deterministically.

Our intuition tells us that if there is a deterministic and effective rule for com-
puting every term of an infinite sequence, then, despite appearance, the sequence
cannot be genuinely random, as von Neumann famously cautioned. But how do
we precisely define the class of infinite sequences that are “genuinely random”?1

1.4 A Laplacian problem

Imagine our blackbox to be a computer program simulating the flip of a fair coin,
with 1 denoting heads, and 0 denoting tails. Suppose that we run it to generate
fifty flips and observe the resulting outcome sequence. Such an outcome sequence
is a binary string of length 50, and there are 250 possible outcome sequences. If
we observe the outcome sequence to be

10010001001100111011001010100000110100001100011100,

we are not surprised. We regard it as a “random binary string”, and consider the
program to be running normally.

But if the outcome sequence is

01010101010101010101010101010101010101010101010101,

we consider it to be an extraordinary event, and justifiably suspect malfunction,
perhaps a bug in the program. But according to simple probability, this binary

1Note that it would be an error to define random infinite sequences as those which cannot
be generated deterministically by a specified rule or arithmetical method. This is because there
are only countably many such methods, while there are uncountably many sequences which are
not random in any sense of the word. For example, there are uncountably many infinite binary
sequences for which the bits at even positions are all set to 0 but the bits at odd positions are
allowed to be arbitrary, and none of these sequences is random.



4 Abhijit Dasgupta

string of perfectly alternating 0s and 1s is as likely to be produced as the first
supposedly “random-looking” string, and so should not be regarded any more
special than the first one. Yet, in a clear intuitive sense, the “regularity” of the
second string makes it much less random compared to the first string.

P. S. Laplace (1749–1827) was aware of this problem and pointed out the fol-
lowing reason why, intuitively, a regular outcome of a random event is unlikely:

“We arrange in our thought, all possible events in various classes; and
we regard as extraordinary those classes which include a very small
number. In the game of heads and tails, if heads comes up a hun-
dred times in a row, then this appears to us extraordinary, because
the almost infinite number of combinations that can arise in a hun-
dred throws are divided in regular sequences, or those in which we
observe a rule that is easy to grasp, and in irregular sequences, that
are incomparably more numerous.” [de Laplace, 18191952]

In addition to the rarity of regular patterns, Laplace points out that certain strings
may have a “cause”, making them unlikely to be random:

“The regular combinations occur more rarely only because they are
less numerous. If we seek a cause whenever we perceive symmetry, it
is not that we regard the symmetrical event as less possible than the
others, but, since this event ought to be the effect of a regular cause or
that of chance, the first of these suppositions, is more probable than
the second. On a table, we see letters arranged in this order: C o n s
t a n t i n o p l e, and we judge that this arrangement is not the
result of chance, not because it is less possible than others, for if this
word were not employed in any language we would not suspect it came
from any particular cause, but this word being in use among us, it is
incomparably more probable that some person has thus arranged the
aforesaid letters than this arrangement is due to chance.” [de Laplace,
18191952]

We therefore observe (still using our vague and imprecise language) that among
all finite strings of a fixed large size (say length 100), there are only a relatively
small number of “non-random” strings — strings which possess “regularity” or
more generally have some “cause” behind them. We may call the other strings to
be random.

Thus, it appears that for finite strings of a fixed large size (say length 100),
there is some attribute that corresponds to the intuitive notion of randomness.
But how do we precisely define it?

This intuitive attribute of randomness can be partially approximated by for-
mulating certain events described in the ordinary language of classical probability.
E.g., by requiring that the standard deviation of the run lengths of digits be within
certain limits one can avoid such regular sequences as the one above with alternat-
ing 0 and 1. In fact, such events are designed and formulated as statistical tests
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for estimating the “randomness confidence” of a finite sequence of digits. Some
examples are restrictions on the distribution of run-lengths, autocorrelation, serial
correlation, comparison with standard test distributions such as χ2-tests, etc.2

However, all such tests appear to be only partial approximations, and no event
formulated in the usual language of classical probability seem to precisely capture
this attribute of randomness in an intuitively satisfactory way.

1.5 The main problems. What this article is about

The considerations above lead us to two classic problems of mathematical and
statistical philosophy:

PROBLEM 1 Randomness for Infinite Sequences. When is a given infinite
sequence of digits random?

PROBLEM 2 Randomness for Finite Strings. When is a given finite string of
digits random?

As it turned out, most of the early mathematical results concerning randomness
were about infinite sequences.3 Work on defining randomness for finite sequences
started later.4 As Ulam had noted [MacHale, 1993]: “The infinite we shall do
right away. The finite may take a little longer.”

It also turned out that the two concepts are closely connected in a remarkable
way with “algorithm” or “effective computability” playing a central role in their
definitions. Quite satisfactory answers to both problems emerged almost simul-
taneously in mid 1960s, together with the birth of the new fields of Algorithmic
Randomness and Algorithmic Complexity.

The primary goal of this article is to present these celebrated solutions of the
above two classic philosophical problems as a brief introduction to algorithmic
randomness and complexity. It is, however, important to note that a vigorous effort
to further sharpen, refine, and calibrate the definition of randomness is currently
being pursued through a large and growing body of lively research activity in
algorithmic randomness [Nies, 2009; Downey and Hirschfeldt, 2010; Li and Vitanyi,
2008; Shen et al., 20??]. Therefore the topic is best viewed as a part of continuing
research, and there is still ample scope for debate if the answers obtained in the
1960s are final.

2See Knuth [1998] for such statistical tests of randomness. Chris Wetzel of Rhodes College
has interactive web pages illustrating such tests of randomness (http://faculty.rhodes.edu/
wetzel/random/intro.html).

3Borel’s 1909 work on normal numbers and the Weyl equidistribution theorem of 1916 are
preliminary forms of randomness for infinite sequences, but it was von Mises who in 1919 directly
focused on the concept and gave a fundamental definition. Church’s introduction of “algorithm”
in 1940 made von Mises’ definition mathematically precise and also made the subject permanently
“algorithmic”. For a truly satisfactory answer, one had to wait another quarter century until
Martin-Löf found it in 1965.

4Early work was done in the 1960s by Solomonoff [1960; 1964], Kolmogorov [1963; 1965], and
then Chaitin (see [Chaitin, 1992] for references).
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Throughout this article, we will consider only strings and sequences, and make
the further simplifying assumption that the only digits (possible outcomes) are 0
and 1 with equal probability of 1

2 each — the “fair coin model”. In other words,
the blackbox always represents the flip a perfectly fair coin. In particular, all
strings and sequences will be binary strings and sequences. This restriction is not
really as stringent as it may appear to be (see subsection 2.5).

1.6 The solutions. Algorithmic randomness

There are three key approaches for defining randomness in sequences: unpre-
dictability, typicality, and incompressibility [Downey and Hirschfeldt, 2010]. We
now briefly and informally introduce these approaches. They will be described in
detail using mathematically precise language later in this article.

• Unpredictability. This can be understood in terms of impossibility of suc-
cessful gambling strategies. According to randomness as unpredictability, an
infinite binary sequence is random if, roughly speaking, it is impossible to
effectively specify a gambling strategy which can make long run gains for the
gambler when played against this sequence as the outcomes. A frequentist
version of randomness as unpredictability was used by von Mises; see the
comments of Feller quoted in subsection 5.1.

• Typicality. A property or attribute of infinite binary sequences is called spe-
cial if the probability that the property holds is zero, and is called typical
if the probability that the property holds is one. An attribute is special if
its complement (negation) is typical, and vice versa. For example, consider
the property of having no run of zeros of length seven. It can be shown that
the probability is zero that an infinite binary sequence has no run of zeros
of length seven, thus this property is special. The intuition here is that if
a sequence has a special property or attribute, then it cannot be random,
and randomness is equivalent to the complete lack of special attributes. Ac-
cording to randomness as typicality, an infinite binary sequence is random
if, roughly speaking, it is impossible to effectively specify a special property
that the sequence possesses. This is essentially the definition of Martin-Löf-
randomness. What Martin-Löf did was to provide a mathematically precise
notion of effective specifiability in this context.

• Incompressibility. Some finite strings can be effectively specified by descrip-
tions much shorter than the string itself. For example, the string

01010101010101010101010101010101010101010101010101,

can be specified as “01 repeated fifty times”. The short description here ex-
ploits the regularity of pattern. The idea is also utilized by data compression
programs: Strings which compress well are the ones having regularity of pat-
tern or redundancy of information, and highly irregular or “random” strings
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do not compress well. This approach, known as Kolmogorov Complexity, was
introduced by Solomonoff, Kolmogorov, and Chaitin, and yields a definition
of randomness for finite strings: A string is random if its shortest description
has length equal to the length of the string itself. This can also be carried
over to infinite strings: According to randomness as incompressibility, an
infinite binary sequence is random if none of its initial segments compress
“very much”.

These three approaches to defining randomness may appear to be independent
of each other, and we might expect them to lead to different definitions of ran-
domness. It is therefore a remarkable fact that (with appropriate choices for the
notion of effective specifiability) all three definitions turn out to be equivalent!
Schnorr’s Theorem, a celebrated result, establishes the equivalence of randomness
as typicality (i.e. Martin-Löf randomness) with randomness as incompressibility.

This surprising equivalence between randomness as unpredictability, random-
ness as typicality, and randomness as incompressibility, is strong evidence that
this common equivalent definition is satisfactory, and that algorithmic random-
ness provides an adequate mathematical foundation for randomness.

1.7 What this article is not about

Let us now clearly state a disclaimer. This article’s scope is restricted to discussions
of only Problems 1 and 2 above, dealing with randomness of sequences and strings
from a purely extensional view. Our coverage of randomness is thus limited to
what may perhaps be called “the randomness of bit patterns”, while the word
randomness as used in ordinary language is overloaded with meanings many of
which do not necessarily involve bit patterns (binary strings and sequences).

Randomness may be discussed in a more general setting than just bit patterns.
This has been done, e.g., by Eagle, who introduces the idea of randomness as
maximal unpredictability, and has written a critique of algorithmic randomness.
One may also regard random and probabilistic processes as the main framework
for investigating randomness. See Eagle [2005], where further references can be
found.

Also, there are popular books on randomness (e.g. Aczel [2004], Beltrami [1999],
and Bennett [1998]) with accessible approaches to various aspects of randomness.
The books by Taleb [2005] and by Mlodinow [2008] include various financial and
social implications of randomness as well.

Even within the limited case of “bit-pattern randomness”, there are other impor-
tant issues, such as the following broad question of considerable philosophical and
practical interest: How can random sequences be physically generated? Another
example is the relation between quantum mechanics and (algorithmic) random-
ness. Several interesting discussions and further references are in [Calude, 2005;
Yurtsever, 2000; Svozil, 1993; Longo, 2009; Bailly and Longo, 2007; Penrose, 1989;
Stewart, 2002].
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Because of our extensional approach, we have omitted all such issues and limited
ourselves only to mathematical definitions of randomness for sequences, i.e., precise
criteria to distinguish random sequences from non-random ones.

But even for mathematical definitions based on the extensional view, algorith-
mic randomness is not the only approach possible. For example, in [van Lambal-
gen, 1990], Van Lambalgen introduces an axiomatic approach to randomness. We
will not discuss such approaches either.

Other than reasons of space limitation and cohesion, there is another point
which has compelled us to select only the topic of algorithmic randomness for
discussion,

This year marks the 100th anniversary of Borel’s strong law (1909), which first
showed the importance of the concept of limiting frequency, and is the precursor of
many ideas based on it, including von Mises’ idea of randomness. We believe that
in the one hundred years since Borel’s strong law, algorithmic randomness stands
out as the crowning achievement in the study of random sequences. In addition
to providing deep philosophical insight, it has unraveled fundamental connections
of randomness with many diverse areas that has been truly spectacular.5

1.8 How this article is organized

Section 2 sets up notation for strings and sequences, the Cantor Space, which
forms the basic framework for carrying out further discussions, and contains a
brief and informal introduction to Lebesgue measure on the unit interval and the
Cantor space, which we treat as equivalent.

Discussion of mathematical randomness begins in Section 3, where we define a
series of classical stochastic or frequency properties in an effort to distill out ran-
domness, but conclude by noting how this forces upon us notions like definability
and effective computability.

In Section 4, an informal but precise definition of effective computability is
given.

Sections 5, 6, 7, 8, and 9 form the core material on algorithmic randomness:
Von Mises randomness, Martin-Löf randomness, Kolmogorov complexity and ran-
domness of finite strings, application to Gödel incompleteness, and Schnorr’s the-
orem.

Sections 10 and 11 form an overview of somewhat more advanced and recent
topics, including definitions of various other forms of related randomness notions
that have been studied, and indicating the current state of affairs.

5Algorithmic randomness is intimately related to the creation and development of several
other fields such as Algorithmic Probability (originated by R. J. Solomonoff) and Universal Search
(originated by L. A. Levin), all of which together comprise a broader (and vast) area now generally
known as Algorithmic Information Theory. In addition to the creation of such fields, there
has been wide and fundamental impact on many areas in mathematics, philosophy, statistics,
and computer science: We mention recursion theory and Hausdorff dimensions; inductive and
statistical inference and prediction; classical information theory; and complexity theory, machine
learning, and artificial intelligence.
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Finally, in Section 12 we express our view on the Martin-Löf-Chaitin thesis.
Proofs of mathematical results are provided or outlined whenever they are fairly

straightforward. Involved proofs are omitted, almost all of which can be found in
one of the books [Feller, 1968; Knuth, 1998; Li and Vitanyi, 2008; Downey and
Hirschfeldt, 2010; Nies, 2009; Chaitin, 1992; Calude, 1994; Odifreddi, 1992].

2 STRINGS, SEQUENCES, CANTOR SPACE, AND LEBESGUE MEASURE

We use the term “string” (if not further qualified) to be a synonym for “finite
sequence”, and the term “sequence” (if not further qualified) to be a synonym for
“infinite sequence”.

To describe sequences and strings, we will use a finite alphabet Σ consisting of a
finite number of letters or symbols. E.g., the decimal alphabet Σ = {0, 1, 2, . . . , 9}
consists of ten digits, and the binary alphabet Σ = {0, 1} consists of just two bits.
A string from Σ is simply a finite sequence of members of Σ. The empty string is
denoted by Λ.

The set of all strings (finite sequences) from Σ is denoted by Σ∗. For a string
σ ∈ Σ∗, |σ| denotes the length of σ.

N denotes the set of all natural numbers. We deliberately leave it ambiguous
if zero is considered a natural number or not. It can always be understood from
context, and this ambiguity does not cause any problem. The set of all infinite
sequences from Σ will be denoted by ΣN. For x ∈ ΣN, we will often write x =
〈xn〉∞n=1 = 〈x(n)〉∞n=1, where xn = x(n) ∈ Σ for each n = 1, 2, . . . .

2.1 Binary strings and sequences. The Cantor space

To simplify the discussion, we will almost always limit ourselves to binary se-
quences and strings, i.e. the case where the alphabet is Σ = {0, 1}. The set
{0, 1}∗ is the set of all binary strings. The set {0, 1}N is the set of all infinite
binary sequences, and is called the Cantor space.

If σ ∈ {0, 1}∗ is a finite binary string, we will let N(σ) to denote the set of all
infinite binary sequences beginning with σ. E.g., N(101) consists of all infinite
binary sequences 〈xn〉∞n=1 for which x1 = x3 = 1, x2 = 0, and xk is arbitrary for
all k ≥ 4.

The subsets of the Cantor space {0, 1}N having the form N(σ) (for some binary
string σ) will be called the basic intervals of the Cantor space. (By defining open
sets as finite or infinite unions of basic intervals, the Cantor space becomes a
topological space which is compact and metrizable.)

2.2 Lebesgue measure over the unit interval

The problem of Lebesgue measure over the unit interval [0, 1] = {x ∈ R : 0 ≤ x ≤
1} is essentially a geometric one: Given a subset E ⊆ [0, 1], we want to assign it
a number µ(E) which represents its “size” or “length”. For very simple subsets
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such as an interval, its measure is simply its length: If J ⊆ [0, 1] is an interval
with endpoints a ≤ b (i.e., J is one of the intervals (a, b), [a, b), (a, b], or [a, b]), the
measure of J , denoted by µ(J), is defined as the length of the interval, µ(J) = b−a.

The next step is to define the length of any open subset of [0, 1]. A subset G of
[0, 1] is said to be open if it is a union of open intervals. A standard fact about this
linear continuum is that any open set can be expressed uniquely as a disjoint union
of (possibly infinitely many) intervals. This allows us to naturally and uniquely
define the measure µ(G) of an open set G ⊆ [0, 1] to be the sum (possibly as an
infinite series) of all the constituent disjoint intervals.

A key idea here is that a set of “small measure” can be covered by an open set
of “small measure”: A set E is said to be measure-zero if E can be covered by
open sets of arbitrarily small measure, i.e., for any ε > 0 there is an open set G
containing A with µ(G) < ε. Slightly more constructively, E has measure-zero if
there is an infinite sequence of open sets G1, G2, G3, . . . with each Gn covering E
and with µ(Gn) < 1/n.

A subset E ⊆ [0, 1] is defined to be (Lebesgue) measurable if for any ε > 0
there is an open set G containing E and an open set H containing the difference
GrE with µ(H) < ε. Thus a measurable set is one which can be approximated
from outside by open sets arbitrarily closely. If E is measurable, it can be shown
that the measure of the open set G above approaches a unique limit as ε → 0,
and we denote this limit by µ(E). This defines the Lebesgue measure for every
measurable subset of [0, 1]. If E ⊆ F ⊆ [0, 1] are measurable sets, then we have
0 ≤ µ(E) ≤ µ(F ) ≤ 1.

The class of measurable sets form a vast collection. If E ⊆ [0, 1] is measurable,
so is its complement [0, 1]rE with µ([0, 1]rE) = 1−µ(E). If 〈En〉 is a sequence of
measurable sets, then their union ∪nEn and intersection ∩nEn are also measurable.
If the sequence 〈En〉 consists of disjoint measurable sets, then the measure of their
union is the sum of the measures of the individual sets: µ(∪nEn) =

∑
n µ(En).

2.3 Lebesgue measure on [0, 1] as probability

Consider the experiment of choosing a member x of the unit interval [0, 1] in such
a fashion that for any two subintervals J1, J2 ⊆ [0, 1] of equal length, it is equally
likely for x to be in J1 as to be in J2. (This is referred to as the uniform distribution
over [0, 1].) For a subset E ⊆ [0, 1], the problem of determining the “probability
that x is in E”, denoted by P (E), is identical to Lebesgue’s problem of finding
the geometric measure (or length) of E.

We therefore identify, for this experiment, the notion of “events” with the class
of measurable sets, and the probability of an event E with the Lebesgue measure
of E: P (E) = µ(E).
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2.4 The Cantor space: Infinite sequence of flips of a fair coin

An infinite sequence of flips of a coin, with 1 representing heads and 0 representing
tails, can be naturally represented by an infinite binary sequence, i.e., by a member
of the Cantor Space {0, 1}N, the set of all possible outcomes in an infinite sequence
of flips of a coin. Subsets of {0, 1}N correspond to events, e.g., the basic interval
N(101) represents the event that the first and third flips are heads and the second
is tails.

We stipulate that the coin is fair and the flips are independent by requiring
that for each n ∈ N the 2n possible outcomes in the first n flips are equally
likely, or equivalently that the probability of the event N(σ) equals 1/2|σ|. Just
as we extended Lebesgue measure on [0, 1] from intervals to open sets and then
to arbitrary measurable sets, a similar process can be carried out to obtain define
a “probability measure” for the “measurable subsets” of {0, 1}N, a process which
we now briefly describe.

The open sets in {0, 1}N are defined to be arbitrary unions of basic intervals
of the form N(σ). A basic interval N(σ) is said to be maximally contained in a
set A if N(σ) ⊆ A but N(τ) 6⊆ A for each proper initial segment τ of σ. Every
open set G then decomposes uniquely into a disjoint union of component basic
open intervals maximally contained in G. So we can now naturally and uniquely
define the measure of G, denote by µ(G), to be the sum of the lengths of these
components. A key idea is again that of “small sets”: If ε > 0 and if we can cover
a set E by an open set of measure less than ε, then we can expect the measure
of E to be less than ε as well. A set E is said to have measure-zero if there is an
infinite sequence G1, G2, G3, . . . of open sets each containing E with µ(Gn) < 1/n
for all n.6 Finally, as before in the case of the unit interval, define E ⊆ {0, 1}N
to be (Lebesgue) measurable if E can be approximated from outside by open sets
arbitrarily closely, i.e., if for any ε > 0 there is an open set G containing E and
and open set H containing the difference GrE with µ(H) < ε.

It can then be shown that the measurable sets form a comprehensive collection
including the open sets (and so all the basic intervals) and each measurable set
E gets naturally assigned a unique measure µ(E) ∈ [0, 1]. Also, the complement
of any measurable set E is measurable with µ({0, 1}NrE) = 1 − µ(E), and for
any sequence 〈En〉 of measurable sets, their union ∪nEn and intersection ∩nEn
are also measurable, with µ(∪nEn) =

∑
n µ(En) whenever the sequence 〈En〉

consists of pairwise disjoint sets. Also, if E ⊆ F ⊆ {0, 1}N are measurable, then
0 ≤ µ(E) ≤ µ(F ) ≤ 1.

Thus, starting with the simple method of assigning the probability (or mea-
sure) 1/2|σ| to each basic interval N(σ), we are then able to naturally extend this
assignment procedure to assign probabilities (or measure) to vastly more general
types of infinite coin-flip events (measurable subsets of {0, 1}N). We call this as-

6It is easy to see that a singleton is measure-zero. Using convergent infinite geometric series, it
now follows that a countable union of measure-zero sets is also measure-zero. Thus all countable
sets are measure-zero. A less trivial fact is that there are uncountable measure-zero sets.
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signment (µ) to be the Lebesgue (or uniform) probability measure on the Cantor
Space {0, 1}N.

In fact, by mapping an infinite binary string x = 〈x(n)〉∞n=1 to the real number∑
n 1/2x(n) ∈ [0, 1], we can naturally identify the uniform probability measure

on the Cantor space with the Lebesgue measure on [0, 1]: The interval [1/2, 1],
e.g., corresponds to the event “the first flip is a heads”. This correspondence, as a
mapping, is not quite one-to-one since the dyadic rationals of the formm/2n (where
m,n are positive integers with 0 < m < 2n) have two different binary expansions,
but these form only a countable set of exceptional points. All other reals in [0, 1]
have a unique infinite binary expansion. So this mapping between the Cantor
space {0, 1}N and the unit interval [0, 1] is an almost one-to-one correspondence
satisfying µ(E) = P (E′) for any measurable subset E ⊆ [0, 1] with E′ being the
set of infinite binary sequences which are binary expansions of the members of E.

To summarize, the Lebesgue measure on [0, 1] (i.e., the uniformly distributed
probability measure on [0, 1]) and the uniform probability measure on the Cantor
space {0, 1}N are essentially the same thing.

The zero-one law. This important result (used later) asserts the following for
any measurable E ⊆ {0, 1}N. Suppose that whenever x, y ∈ {0, 1}N are sequences
differing only at a finite number of places (i.e., (∃m)(∀n > m)(x(n) = y(n))), then
x ∈ E ⇐⇒ y ∈ E. Then E has measure either zero or one.

2.5 More general probability distributions

We stress the following: The notion of randomness must be understood relative to
an a priori fixed probability distribution for the outcome values. Each probability
distribution for the outcome values determines a specific set of random sequences,
and a sequence which is random relative to a given probability distribution for
the outcomes will not be random relative to a different probability distribution for
those outcomes. Without an underlying fixed a priori probability distribution for
the possible outcome values, the notion of a “random sequence” would not even
make sense. It is thus useful to fix a specific probability distribution on a specific
set of outcome values (a probability model) when discussing random sequences.

As mentioned earlier, in this article we will restrict our attention to the case
where the underlying probability distribution for the blackbox is the fair coin
model: Only two equiprobable outcomes 0 and 1 with P (0) = P (1) = 1

2 . We
will then try to find out which sequences are random (i.e. investigate Question B
of Section 1.2 and Problems 1 and 2 of Section 1.5) relative only to this fair
coin model. This may at first appear to be too severe a restriction, but the
extra generality obtained by considering more general probability distributions,
while adding verbiage, would not provide much extra insight into the question of
randomness. For the reader who is still worried about our restriction to the fair
coin model alone, we now mention some technical results which show how this
simple case can represent, at least for sequences, other more general distributions.

Suppose that our blackbox represents a more general probability distribution,
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with n outcomes ω1, ω2, . . . , ωn, and corresponding probabilities P (ωi) = pi, i =
1, 2, . . . , n, where 0 < pi < 1 and

∑n
i=1 pi = 1. Then the probability space PN of

all infinite sequences of outcomes is still essentially identical to the Cantor space
with Lebesgue measure. In particular, there is a measurable bijection between
PN and {0, 1}N which preserves measure. This is a technical result on finite Borel
measures on complete separable metric spaces. If p1, p2, . . . , pn are computable
real numbers, then this bijection can be assumed to be an effective one.

If the probabilities p1, p2, . . . , pn are dyadic rational numbers (as is the case,
e.g., in computer representations of numbers), then one can use an especially
simple effective coding by which any sequence (finite or infinite) of outcomes of
the blackbox can be represented effectively by a corresponding binary sequence
from the fair coin model, while still preserving probabilities of all events.

As another example, we mention the so called von Neumann trick, a simple
method by which one can “turn a biased coin into an unbiased one”, or, more
precisely, simulate sequences of flips of a perfectly unbiased coin using sequences
of flips of a biased coin (whose probability of heads differs from probability of tails).
For every two consecutive flips, record the outcome as a single 0 if the (ordered)
pair of flips is HT, record it as a single 1 if the pair of flips is TH, otherwise discard
the pair (the cases HH and TT), and move to the next pair of flips of the coin.

We will see later that Martin-Löf’s definition of randomness is general and
flexible enough to be applied directly to very general probability distributions.
However, the technical results mentioned here show that there are mathematically
sound ways to restrict our attention to the simplified case of the fair coin model,
without imposing any serious limitation to the study of random sequences. We
adopt this simplification, which equivalently means that the underlying sequence
space will always be the Cantor Space with the (uniform) Lebesgue measure.

3 CLASSICAL STOCHASTIC RANDOMNESS IN INFINITE SEQUENCES

We now begin the discussion of the fundamental question stated in Problem 1:
Given an infinite binary sequence x = 〈x1, x2, . . . , xn, . . . 〉 ∈ {0, 1}N, how do we
determine if it is random?

3.1 Key points

We start by noting several key points of randomness in infinite binary sequences.
Recall that the Cantor space with Lebesgue measure is the underlying probabilistic
model throughout. Our observations here will be heuristic and informal but of
fundamental importance.

(a) The probability that a sequence is random equals one, i.e., the random se-
quences form a set of measure one (full-measure set). A basic intuition here
is that the omission or addition of one single bit has no effect on the random-
ness of an infinite sequence: If x is the sequence x1x2x3 . . . , and x′ is the
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sequence x2x3x4 . . . obtained by dropping only the first bit of x, then x′ is
random if and only if x is random. It follows by mathematical induction that
the randomness of an infinite sequence should depend only on its “eventual
behavior” and no amount of finite part can determine the randomness of the
entire sequence.7 Thus if two infinite sequences x and y agree on all but a
finite number of places (i.e. ∃m∀n>m (xn = yn)), then the randomness of
x is equivalent to the randomness of y. This implies that the set of random
sequences satisfies the condition for the zero-one law, and therefore must be
either a measure-zero set or a full-measure set. As pointed out by Laplace,
it seems natural that the random sequences should form the vast majority
of sequences: If we “randomly pick” a sequence in {0, 1}N, or equivalently,
generate one by “randomly flipping” a fair coin infinitely many times, the
probability that the result is random should be high, and so non-zero. It
follows that the random sequences must form a set of measure one.

(b) Second, if the sequence of outcomes of a gambling wheel with two equiprob-
able outcomes is random then no successful betting strategy can be devised
against it. Note that, here the bits of an infinite sequence x are thought to
be generated by the independent turns of the gambling wheel, and that the
randomness of x would imply a strong form of unpredictability for the future
bit values of x (from previously observed bit values). More precisely, sup-
pose that a gambling house is generating the infinite binary sequence x and
offering the following fair game: A gambler can bet an amount b of money
predicting the next bit of x; if the prediction is correct, the gambler wins an
amount b, otherwise loses the same amount b. (This rule is tantamount to
our underlying assumption of a fair coin model.) We say that the gambler
is able to devise a successful gambling system against x, or beat the house
against x, if by using a suitable strategy the gambler can start with a finite
initial capital and win an arbitrarily large fortune without going bankrupt.
By a strategy we mean a finitely specifiable rule which determines how much
(and whether) to bet on particular turn based on the outcomes of the pre-
vious turns. (These notions will be made more precise later in subsections
5.1 and 11.2.) From the point of view of the house, the randomness of the
sequence x of outcomes must imply that the bits of x should be so unpre-
dictable that no gambler would be able to beat the house against x. We
carefully note that this impossibility of a successful gambling system is a
fundamental necessary condition for randomness of an infinite sequence, (a
fact first recognized by von Mises, see subsection 5.1 for quoted comments
of Feller).8

7This is quite similar to the notion of the limit of an infinite numerical sequence found in
elementary calculus: No amount of alternation of the values of any finite number of terms of a
sequence can affect its limit.

8Later, during the attempts in subsections 5.1 and 11.2 to find a suitable definition of ran-
domness, things will be turned around to postulate this impossibility condition as also a sufficient
condition for randomness.
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(c) On the other hand, randomness cannot be identified with complete and abso-
lute lawlessness. We may try to think of a sequence to be random if it satisfies
no law whatsoever (“absolutely lawless”). But, as pointed out by Calude in
[Calude, 2000] (see also [Volchan, 2002]), no such sequence can exist, since
every digit-sequence satisfies the following Ramsey-type combinatorial law
first proved by van der Waerden [1927]: The positions (indices) for at least
one digit-value will contain arbitrarily long arithmetic progressions. Thus
we have to abandon such ideas of “complete lawlessness”.

(d) In fact, random sequences will necessarily satisfy certain limiting or stochas-
tic properties. For example, given a sequence x = 〈xk〉, let Sn[x] denote the
number of 1s (or Successes) in the first n terms of the sequence x:

Sn[x] =
n∑
k=1

xk = Number of 1s in first n terms of x,

so that the quantity 1
nSn[x] represents the proportion of 1s in the first n

terms of x. This proportion is called the relative frequency or simply the
frequency (of successes). If for a sequence x this proportion exceeds 2

3 (say)
infinitely often (i.e., 1

nSn[x] > 2
3 for infinitely n), then x cannot be random

(under the fair coin model), because a gambler would then be able to exploit
this “bias within x” to devise a strategy which (starting with a finite initial
capital) can return an arbitrarily large fortune without going bankrupt.

More precisely, if x is to be random so that no gambling system would be
successful against it, then it can be shown that the following condition must
hold:

For no positive number p should the proportion 1
nSn[x] exceed 1

2 +p
(or fall below 1

2 − p) infinitely often.9

This condition on x is equivalent to requiring that the relative frequency
1
nSn[x] approach the value 1

2 in the limit as n approaches infinity.

Thus, for every random x we have limn→∞
1
nSn[x] = 1

2 . This exemplifies
that in order to be random, a sequence, instead of being “totally lawless”,
must actually satisfy certain stochastic laws of “unbiasedness”. In the rest
of this section we will discuss further stochastic laws that should be satisfied
by every random sequence, starting with the Borel strong law, whose basic
condition is the same as the one in the above example.

9If 1
n
Sn[x] exceeds 1

2
+p infinitely often for a positive p, then the gambler can beat the house

by betting a constant fraction r of his remaining capital at each turn predicting a bit outcome
of 1, where r is a constant fraction with 0 < r < p/(1 + p). We omit the details of calculation.
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3.2 The Borel Strong Law

In 1909, Émile Borel [1909] proved a remarkable fact about infinite binary se-
quences which was later generalized by many mathematicians (from Cantelli to
Kolmogorov) and became a fundamental result of probability theory called The
Strong Law of Large Numbers. Borel established that with probability one, the
proportion of 1s among the first n terms ( 1

nSn) approaches the value 1
2 in the

limit.

THEOREM 1 The Borel strong law. For independent infinite sequences of flips
of a fair coin, let B denote the event that the proportion of successes among the
first n flips, 1

nSn, approaches the limit 1
2 as n→∞, or formally, put

B =
{
x ∈ {0, 1}N : lim

n→∞

Sn[x]
n

=
1
2

}
.

Then the probability of the event B is 1, i.e. the set B has Lebesgue measure 1.

We saw that due to impossibility of successful betting strategies, a random
sequence must satisfy the condition of the Borel strong law. That, together with
our earlier observation that the random sequences form a set of measure one,
provides an informal proof for the Borel strong law. (For a formal proof, see
[Feller, 1968].)

Informally, the Borel strong law asserts that if we randomly pick a member x
from {0, 1}N, the probability is one that the relative frequency of 1s among initial
parts of x approach a limiting value called the limiting frequency, and this limiting
frequency is equal to 1

2 , so that “randomly picked sequences are unbiased”.
Conversely, if for a sequence x this limiting frequency exists but is not equal to

1/2, then, in view of our underlying fair coin model, x would clearly be biased, not
random. And if the limiting frequency does not exist then either lim supn

1
nSn[x] >

1
2 or lim infn 1

nSn[x] < 1
2 , and in either case arbitrarily large segments of x would

be biased with arbitrarily great statistical significance, so x again would be non-
random (successful gambling systems could be devised against x in these cases).

Thus, it is natural to view this “stochastic law of unbiasedness” as a “stochastic
law of randomness”.

Note that satisfying this law is only a basic necessary condition for being ran-
dom. For example the sequence 010101010101 · · · of alternating 0s and 1s satisfies
the condition of the strong law but this sequence is clearly not random. We there-
fore look for stronger stochastic laws which would exclude such simple examples.

3.3 Borel Normality

Let σ be a fixed binary string with length |σ| = k (e.g., if σ = 00110101 then its
length is |σ| = k = 8). If a fair coin is flipped k times, the probability of obtaining
σ as the resulting outcome equals 1/2k. For an infinite binary sequence x, consider
a block of k bits starting at bit position n: This is the block segment of x given
by xnxn+1 . . . xn+k−1. It is not hard to see that with probability 1 the string σ
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must occur infinitely many times in an infinite binary sequence.10 Adding this
condition (that every finite binary string must occur in x with infinite frequency)
as a stochastic law certainly excludes simple sequences satisfying the Borel strong
law, such as 01010101 · · · , as being random.

In [Borel, 1909], Borel had established an even stronger fact. Call an infinite
binary sequence x to be Borel normal in base 2 if for each fixed binary string σ
of length |σ| = k, the frequency of occurrences of σ among the first n bits of x
(as a fraction of n) approaches 1/2k as n → ∞. (For |σ| = k = 1, this reduces
the condition of the Borel strong law.) Borel proved that the probability that x is
normal in base 2 is one, i.e. almost all infinite binary sequences are normal in
base 2. Any infinite binary sequence satisfying this property will clearly be “much
more random” than simple sequences like 01010101 · · · .

An immediate consequence of the Borel normality is another form of unpre-
dictability for random sequences: The observation of any particular bit pattern in
a random sequence does not influence the value of the next bit. More precisely,
for almost all infinite binary sequences x and any fixed finite binary string σ (bit-
pattern), the limiting frequency that σ is immediately followed by 0 equals the
limiting frequency that σ is followed by 1.

An explicit example of an infinite binary sequence which is normal in base 2 is
the Champernowne binary sequence obtained by concatenating the binary repre-
sentation of every non-negative integer (taken in their natural order):

01101110010111011110001001101010111100110111101111 · · ·

As far as randomness is concerned, this is a big improvement over the simple
01010101 · · · , but it is impossible to call this sequence random, since it is also
generated by a simple effective procedure.

Recall that one can identify {0, 1}N with the unit interval [0, 1] by viewing
infinite binary sequences as binary expansions of reals in [0, 1] (after disregarding
a negligible countable subset of {0, 1}N). This identification preserves measurable
sets and the measure of every such set. Moreover, given an integer base b > 1,
every real x ∈ [0, 1] can be expanded in base b as:

x =
∞∑
k=1

xkb
k, 〈xk〉 ∈ {0, 1, . . . , b− 1}N.

The terms of the infinite sequence 〈xk〉 ∈ {0, 1, . . . , b − 1}N above are known as
the b-ary digits of x. E. g., b = 2 for binary and b = 10 for decimal expansion.

For x ∈ [0, 1] with base b expansion 〈xk〉, we say that x is Borel normal in
base b if for each fixed finite string σ ∈ {0, 1, . . . , b − 1}∗ of length |σ| = k, the

10Proof: Divide x into consecutive blocks of size k each. For any n, the probability that σ is
not the n-th block equals the constant r = 1− 1/2k. So the probability that σ does not occur as
one in a run of m consecutive blocks is rm. Since r < 1, rm → 0 as m→∞, and thus for any n
the probability that σ does not occur after the n-th block is zero. It follows that the probability
that σ occurs in only finitely many blocks is also zero, QED.
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frequency of occurrences of σ among the first n b-ary digits of x (as a fraction of
n) approaches 1/bk as n→∞. Finally, x is absolutely normal if x is Borel normal
in every base b > 1. Note that by the identification of {0, 1, . . . , b−1}N with [0, 1],
these definitions apply to infinite sequences as well.

Two examples numbers Borel normal in base 10 are the following reals shown
in decimal expansion:

0.12345678910111213 · · · (Decimal Champernowne number),
0.235711131719232931 · · · (Decimal Copeland-Erdös number).

For the first number above, the decimal digits after the decimal point are formed
by concatenating the positive integers written in decimal notation (in their nat-
ural order), while the second one has decimal digits formed by concatenating the
positive primes written in decimal notation. While both these are Borel normal
in base 10, it is not clear if they are Borel normal in any other base.

Borel’s result implies that almost all reals in [0, 1] (almost all infinite binary se-
quences) are actually absolutely normal. But it is harder to come up with examples
of absolutely normal numbers, as they have an even higher degree of randomness
compared to the Champernowne number or the Copeland-Erdös number. It is
an old open question if the number π (or

√
2, or e) is absolutely normal, or even

normal in some base whatsoever.
Following early work of Sierpinski [1917] (also Turing [1992]), Becher and Figueira

[2002] have constructed absolutely normal numbers using an effective procedure
(these are real numbers which are computable, although somewhat complicated
to define).

3.4 Laws of random walk (“wandering drunkard” laws)

One can identify the infinite binary sequences (or, equivalently, all possible out-
comes of an infinite sequence of coin flips) with the set of all random walks. Con-
sider the number line infinitely extended in both directions and indexed by the
integers Z, and a person starting at 0 taking a sequence of steps determined by
x ∈ {0, 1}N as follows: The first step is one unit to the right (in the positive direc-
tion) if x1 = 1 and one unit to the left if x1 = 0; and the n-th step of the person
is similarly determined by the value of xn. If x is random, then this results in a
random walk (sometimes called the drunkard’s walk). If Sn[x] denotes the number
of 1s (Successes) in the first n bits of x and Fn[x] = n − Sn[x] the number of 0s
(Failures) in the first n bits of x, then the position of the person on the number
line after step n is given by:

Sn[x]− Fn[x] = 2Sn[x]− n.

It is not hard to see that with probability 1, the person must move away an
arbitrarily large distance to the right of the starting point, and also an arbitrarily
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large distance to the left of the starting point.11 Formally, in terms of infinite
binary sequences, the set{

x ∈ {0, 1}N : sup
n

Sn[x]− Fn[x] = +∞ and inf
n

Sn[x]− Fn[x] = −∞
}

must have measure (probability) one.
In particular, this stochastic law implies that for a walk to be random, the

person must oscillate about the origin with “arbitrarily large amplitudes”, and
must “cross the origin” from right to left and from left to right infinitely many
times:

THEOREM 2 Law of Symmetric Oscillation in Random Walks. If x ∈ {0, 1}N is
random, then we must have:

Sn[x]
n

>
1
2

for infinitely many n, as well as:
Sn[x]
n

<
1
2

for infinitely many n.

Thus a walk in which the person eventually stays on one side of the origin (even-
tually to the right or eventually to the left) is “biased” and cannot be “random”.

3.5 The Law of Iterated Logarithms and Strong Normality

The Borel strong law says that 1
nSn converges to the expected value 1

2 with proba-
bility 1, but it does not say how the variance (or standard deviation) of Sn behaves
asymptotically.

A much more precise and stronger theorem (than the Borel strong law) is the
Law of Iterated Logarithms, which gives an exact asymptotic bound on the de-
viation of Sn: With probability one, the values of Sn spread around its mean to
an asymptotic distance of

√
2 log log n times its standard deviation. To state it

more precisely, note that the mean of Sn is µn = n/2, and its standard deviation
σn =

√
n/2. Then the Law of Iterated Logarithms asserts the following: For any

λ > 1, the probability is one that Sn < µn + λ
√

2 log log nσn for all but finitely
many n, and for λ < 1, the probability is one that Sn > µn + λ

√
2 log log nσn for

infinitely many n; and similarly for the lower bounds of Sn. (See Feller [1968] for
proof).

The Law of Iterated Logarithms has both the Borel strong law and the Law of
Symmetric Oscillation in 3.4 as immediate corollaries.

11Proof (outline): Computing binomial probabilities, the probability that |Sn[x]− Fn[x]| ≤ k
for all but finitely many n equals zero for each k, and hence the probability that the sequence
〈Sn[x] − Fn[x] : n ∈ N〉 is unbounded equals one. Now the events supn Sn[x] − Fn[x] = +∞
and infn Sn[x] − Fn[x] = −∞ are equiprobable and satisfy the conditions of the zero-one law.
So either both events have probability zero, or both have probability one. But it is impossible
for both these events to have probability zero, as that would imply boundedness of the sequence
〈Sn[x]− Fn[x] : n ∈ N〉 with probability one (a contradiction), and the result follows.
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Belshaw and Borwein [2005; ] have used a slightly weaker version of the Law
of Iterated Logarithms to define the notion of Strong Normality. They show that
requiring a sequence to be strongly normal makes it more random than requiring it
to be simply Borel normal. This is established both by graphic empirical evidence
and by proving that the Champernowne binary sequence is not strongly normal.
Since every sequence satisfying the Law of Iterated Logarithms is strongly normal,
it follows that the Champernowne binary sequence violates the Law of Iterated
Logarithms.

3.6 Equidistribution laws and the Ergodic Frequency Theorem

For any statement P , we use the notation JP K to denote the binary truth value of
the statement P , i.e.,

JP K =

{
1 if P is true
0 if P is false

.

Let 〈xn〉 be an infinite sequence of real numbers in [0, 1). We say that 〈xn〉 is
equidistributed (or uniformly distributed) if for all 0 ≤ a < b ≤ 1,

lim
n→∞

1
n

n∑
k=1

Jxk ∈ [a, b)K = measure of [a, b) (= b− a).

In other words, 〈xn〉 is equidistributed if the limiting frequency with which xn
enters the interval [a, b) equals the size of [a, b).

Similarly, a sequence 〈xn〉 of infinite binary sequences (i.e. each xn ∈ {0, 1}N)
is equidistributed if for each finite binary string σ,

lim
n→∞

1
n

n∑
k=1

Jxk ∈ N(σ)K = measure of N(σ)
(

=
1

2|σ|

)
,

where N(σ) is the set of all infinite binary sequences having σ as an initial segment.
Equidistribution can also viewed as a form of unbiasedness: Every subinterval

asymptotically gets its “proper share” of the sequence.
A great deal of classical mathematical literature exists on equidistribution (see

[Kuipers and Niederreiter, 1974]). We mention a theorem of Weyl: If 〈an〉 is a
sequence of distinct integers, then the sequence 〈FRAC(anx)〉 is equidistributed for
almost all x in the unit interval. (Here FRAC(x) denotes the fractional part of
x ∈ R: FRAC(x) = x − bxc, where bxc is the floor of x, or the greatest integer
not greater than x.)

Borel normality can be viewed as a special case of the Weyl equidistribution
theorem just mentioned. Taking an = 2n−1, we see that 〈FRAC(2n−1x)〉 is equidis-
tributed over the unit interval for almost all x. Moving to {0, 1}N, this implies that
for almost all x = 〈xn〉 ∈ {0, 1}N, the sequences 〈x1, x2, x3, . . . 〉, 〈x2, x3, x4, . . . 〉,
〈x3, x4, x5, . . . 〉, etc, are equidistributed over {0, 1}N.
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Let L : {0, 1}N → {0, 1}N denote the left-shift operator:

L(〈x1, x2, x3, . . . 〉) = 〈x2, x3, x4, . . . 〉.

Then we may restate this equidistribution by saying that for almost all x ∈ {0, 1}N,
the sequence 〈x, Lx, L2x, . . . 〉 is equidistributed. In other words, for every finite
binary string σ,

lim
n→∞

1
n

n−1∑
k=0

q
Lkx ∈ N(σ)

y
= measure of N(σ)

(
=

1
2|σ|

)
,

for almost all x ∈ {0, 1}N. But this is precisely the statement that almost all
infinite binary strings are normal in base 2.

The left-shift operator L is an example of an ergodic operator, and the last
displayed equation is a special case of the Birkhoff Ergodic Theorem.

In subsection 11.6, we further discuss how this approach can be used as as a
stochastic law for specifying randomness.

3.7 General probabilistic laws for specifying randomness

In general, suppose that a specific law L for sequences (i.e. a specific property L of
sequences) is satisfied with probability one, i.e. satisfied by almost all sequences.
We have seen many examples such laws (“laws of large numbers”): The Borel
strong law, Borel normality, Symmetric Oscillations, Iterated Logarithms, etc,
form an increasingly stringent sequence of such laws. Let us call any such law to
be a probabilistic law of randomness. Formally, a probabilistic law of randomness,
or simply a randomness law, is an explicitly defined set L of binary sequences
having full-measure. Given such a law L, the probability that a random sequence
will satisfy it is 1, so we can make L to be another law for randomness.

By specifying more and more stringent randomness laws, we can try to verify
that a given sequence is sufficiently random in this sense. In fact, any algorithm
for generating pseudo-random sequences needs to be subjected to a series of such
theoretical stochastic tests12 to estimate the “quality of randomness” for sequences
generated by the algorithm.

After a sufficient number of such stages of refinement, we can hope to arrive at
the “right” definition of randomness for infinite sequences — a definition which
best matches our intuition. This is the approach taken by Knuth in his fascinating
article What Is a Random Sequence? (Section 3.5 in [Knuth, 1998]). Knuth gives
a series of definitions, R1–R6, and claims (or hopes, as he clarifies in a later
footnote) that the final refinement (definition R6) is an appropriate definition of
randomness.

12This should not be confused with statistical tests for randomness in a finite sequence of
digits. As mentioned earlier, for an infinite sequence, no amount of finite part can determine
if the entire sequence is random. Statistical tests, in particular the χ2-tests, are important for
estimating “randomness confidence” for a finite set of data. See Knuth [Knuth, 1998] for a list
of statistical tests of randomness, and p. 80 of [Knuth, 1998] for theoretical tests. John Walker
distributes a suite of statistical tests for randomness.
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3.8 Is absolute probabilistic randomness possible?

What happens if we define a sequence to be random if it satisfies all explicitly
defined probabilistic randomness laws? Provisionally, let us call such a sequence
absolutely random.

Unfortunately, such a definition causes problems.
First, we have an apparent paradox: For an arbitrary binary sequence y, con-

sider the randomness law Ly := {x ∈ {0, 1}N : x 6= y}. If x satisfies all randomness
laws, then x ∈ Ly for all y ∈ {0, 1}N, but this implies x ∈ Lx , so x 6= x, a contra-
diction! It follows that no binary sequence can satisfy all randomness laws!

However, this is not a real paradox. Since every law can be written using a finite
sequence of symbols from a finite alphabet, there are at most countably many laws
that can be explicitly defined. For all but a countably many members y ∈ {0, 1}N,
the law Ly cannot even be explicitly stated, and hence will not count.

But, second, we run into a more serious technical metamathematical problem:
The notion of “all randomness laws”, which makes good intuitive sense, is not
formalizable in the standard system of axiomatic mathematics (ZFC). The reason
for this is that the notion of a randomness law really refers to a definable subset
of {0, 1}N of full-measure, but the notion of definability itself can only be defined
in terms of satisfaction, or truth. By a classic result of Tarski, it is impossible to
formalize the notion of truth in a formal system within the system.

One way out from this metamathematical difficulty is to not talk about the
entire class of all definable subsets of {0, 1}N, but restrict ourselves to those which
can be defined using formulas with a limited number of quantifiers. By restricting
the number and scope of the quantifiers in the defining formulas, various hierarchies
of definable subsets of {0, 1}N are obtained, such as the arithmetical hierarchy
(scope of quantifiers limited to the set of natural numbers), and the analytical
hierarchy (scope of quantifiers limited to natural and real numbers).

This means that we must be satisfied with relative degrees of randomness, and
Absolute Randomness, like truth in formal systems, must remain elusive forever.

This is the approach taken by modern research. Very roughly, the n-th level of
the arithmetical hierarchy consists of sets defined by formulas with n alternating
quantifiers ranging over natural numbers. For each n, a notion of n-randomness
can be defined appropriately. The higher the value of n, the stronger is the ran-
domness. The lowest level of this hierarchy, which defines 1-randomness by suit-
ably considering algorithmic randomness laws, is especially important. It captures
the random sequences by defining them as the ones which satisfy all “algorithmic
stochastic laws converging algorithmically.” But we first need to rigorously define
the concept of algorithm to talk about these notions precisely.

4 ALGORITHMS AND POST MACHINES

Like randomness, the intuitive notion of algorithm (or effective computation) was
not easy to capture. During the early part of the 20th century, in response to
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Hilbert’s program, there was a great deal of effort by mathematicians to come
up with a precise definition of the term “algorithm”. During the 1930’s decade,
which began with Gödel’s celebrated negative answer to Hilbert’s program, several
mathematicians independently came up with such definitions. These included, in
addition to Gödel, Herbrand, Church, Kleene, Post, and of course, Turing.

After sorting out more restrictive definitions (such as those now known as primi-
tive recursive computation), mathematicians converged on a definition that Church
(in 1936) announced as the appropriate definition for algorithm. Church’s asser-
tion is known as Church’s Thesis or the Church-Turing thesis. This is the defi-
nition that is accepted today, and so the Church-Turing thesis turned out to be
highly successful. Most remarkably, almost all independent definitions coincided
and produced the same characterization of the notion of algorithm!

We present this definition as a variant of Post’s original version (see also [Us-
pensky, 1983; Davis, 1980]).

4.1 Post machines and programs

A Post Machine consists of a control part containing a program (a finite list of
instructions described below), a bidirectional infinite tape of memory bits, and a
head (shown as ⇑) which at any time is located at some unique bit position (the
“current bit”) of the tape.

. . .
← Bidirectional tape of bits (memory) →

0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0
⇑

0 RIGHT
1 FLIP
2 IF1GOTO:0

Program (control)

. . .

The Post Machine

The head can read the bit at the current position as either 0 or 1 and inform this
value to the control, and at the direction of control it can either change the bit
value at the current position, or move to one bit position to the left, or to one
position to the right. The value of every tape bit is always either 0 or 1 (there are
no blank symbols).

Instruction Code Function

FLIP 0 Complement current bit: 0 becomes 1 and 1 becomes 0

LEFT 1 Move the head one bit position to the left

RIGHT 2 Move the head one bit position to the right

IF1GOTO:n n + 3 Conditional jump: If current bit = 1, GO TO instruction # n

Table 1. Post Machine Instruction set and their numeric encodings
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The Post Machine has four13 types of instructions, as listed in the table.
A Post Machine program is simply a finite list of instructions as given in Table 1.

Equivalently, since every instruction corresponds uniquely to a natural number
code in Table 1, a program can be defined as a finite sequence of natural numbers.
In addition, every instruction in the program is assumed to be labeled serially by its
“line number”, starting with 0 for the first instruction. Program execution starts
at line number 0 and sequentially proceeds to the following line, except possibly for
the IF1GOTO:n instruction. There is no explicit STOP or HALT instruction, and
the program terminates whenever it is unable to execute the “next instruction”.

Here is an example program and its code as a finite sequence of natural numbers:

0 RIGHT
1 IF1GOTO:0
2 FLIP
3 LEFT
4 IF1GOTO:3

= 〈2, 3, 0, 1, 6〉.

We encode natural numbers as strings by the correspondence n↔ 1n+10:

0 ↔ 10, 1 ↔ 110, 2 ↔ 1110, 3 ↔ 11110, . . .

Given a program P and a positive integer k, we will now define a partial function
ϕ of k natural number arguments. To find ϕ(n1, . . . , nk), we start the program
with the input string 1n1+10 . . . 1nk+10 on the tape and the head, as in:

. . . 0 1
⇑
P

n1︷ ︸︸ ︷
1 . . . 1 0 1

n2︷ ︸︸ ︷
1 . . . 1 0 . . . . . . 1

nk︷ ︸︸ ︷
1 . . . 1 0 0 . . . (other tape bits are 0).

There are now two possibilities, and we define ϕ(n1, . . . , nk) accordingly:

Case 1 The program P terminates when started as above. We then define ϕ(n1,
. . . , nk) = m, where m is the length of the run of 1s to the right of the head,
before the first 0 to the right of the head, as in:

. . . ∗ ∗
⇑
P

m︷ ︸︸ ︷
1 1 . . . 1 0 ∗ . . .

(We express the situation in this case by saying that the program P halts on
the inputs n1, . . . , nk with output m.)

Case 2 The program P started as above does not terminate (“loops forever”). In
this case we leave ϕ(n1, . . . , nk) undefined.

13One can combine the first two instructions into a single one to have an adequate version of
the Post Machine with only three types of instructions.
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Thus, for every program P and positive integer k, there is a unique k-ary partial
function ϕ determined as above, and we express this by saying ϕ is the k-ary
partial function computed by P , or P computes the k-ary partial function ϕ.

For example, the example program above computes the 1-ary function f(n) =
n + 2, but it also computes the 2-ary function f(m,n) = m + n + 3. As sim-
pler examples, note that the single line program with the only instruction LEFT
computes the (1-ary) successor function s(n) = n + 1, and the empty program
computes the identity function f(n) = n.

We can now formally define the notion of “algorithm” or effective computabil-
ity :

DEFINITION 3. A k-ary partial function f = f(n1, n2, . . . , nk) is effectively par-
tial computable or simply partial computable if there is Post machine program P
such that P computes f . If f is total, we say that f is effectively computable, or
simply computable.

A subset R ⊆ Nk (i.e., a k-ary relation R, which is simply a set of natural
numbers if k = 1) is called effectively computable or algorithmically decidable or
simply computable if its characteristic function is a computable function.
R ⊆ Nk is called computably enumerable (or c.e.) if it equals the domain of

some k-ary partial computable function.

(In older literature the term “recursive” is used in place of “computable”.)
It can be shown that a set A is c.e. iff it equals the range of a partial computable

function f . If the set A is non-empty, the function f can be assumed to be total.
This explains the terminology: A set E is computably enumerable if its elements
can be enumerated by a computable function f , as in E = {f(1), f(2), f(3), . . . }.

Another important fact is that a set is computable iff both the set and its
complement are c.e.

Most importantly, we want to note that the notions of effectively computable
functions and computable sets, c.e. sets, etc, are all independent of the particular
model of computation. In particular, if a function can be computed by some other
computer, however powerful, it will be also computable by some Post machine
program.

Since there are only countably many programs but uncountably many sets and
functions of natural numbers, it follows that most functions are not computable
and most sets are not decidable (not even c.e.). We will see some specific examples
soon.

4.2 Gödel numbering Post machine programs

Since a program P is a finite sequence of natural numbers, say P = 〈p1, p2, . . . , pm〉,
each program is easily coded into a single natural number in an effective manner.

One way to do this would be to build an integer e(P ) from P = 〈p1, p2, . . . , pm〉
in binary notation as follows: Write 1 followed by pm zeros, followed by another
1 and pm−1 more zeros, and so on, ending with 1 followed by p1 zeros. Finally,
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convert this binary string into an integer in the usual way. In other words,

e(P ) = 2p1 + 2p1+p2+1 + 2p1+p2+p3+2 + · · ·+ 2p1+p2+···+pm+(m−1).

e(P ) is called the Gödel number of P . For example, the Gödel number of the
example program P = 〈2, 3, 0, 1, 6〉 is 66244 (in decimal). Note that Gödel number
of the empty program (which computes the identity function) is 0.

There is an equally effective procedure to convert any natural number to the
corresponding Post machine program. For example, given the integer 140 (in
decimal), we first write it in binary as 10001100, and then read off the number of
consecutive zeros after each 1, starting from the rightmost 1 and moving to the
left. This gives us the sequence 〈2, 0, 3〉, which decodes into the program

〈2, 0, 3〉 =
0 RIGHT
1 FLIP
2 IF1GOTO:0

.

It is another remarkable fact that there is Post machine program U which, given
a finite sequence of numbers as input arguments, treats the first argument as the
Gödel number of a program P , and then (by decoding the first argument) is able
to simulate P on the remaining arguments. Such programs U are called universal.

THEOREM 4 Universal Programs and Computable Functions. There is a (uni-
versal) Post machine program U which computes a partial function Φ(m,n) of two
variables with the following property: For every Post machine program P with
Gödel number e = e(P ), the 1-ary function ϕ computed by P equals the function
Φe defined by Φe(n) = Φ(e, n), i.e. ϕ = Φe. In particular, every single-variable
partial computable function f equals Φe for some e.

Now put We = dom Φe, and recall that a set is called c.e. if it equals the domain
of some partial computable function. Since the sequence 〈Φe : e ∈ N〉 contains all
partial computable functions, so the sequence 〈We : e ∈ N〉 forms a list of all c.e.
sets.

We define the special set ∅′ as ∅′ = {e : e ∈ We}. This is an example of a c.e.
set whose complement is not c.e. To see this suppose the complement of ∅′ is a
c.e. set so that for some e we have n ∈We ⇐⇒ n 6∈ ∅′ for all n. Taking n = e we
get

e ∈We ⇐⇒ e 6∈ ∅′ ⇐⇒ e 6∈We,

a contradiction. It follows that ∅′ is not computable.
The domain of the function Φ is called HALT, since Φ(m,n) is defined iff the

program with Gödel number m halts on input n. HALT is a c.e. set by definition,
with

n ∈ ∅′ ⇐⇒ (n, n) ∈ HALT, for all n.

Therefore if HALT were computable, so would be ∅′, which we have seen to be
non-computable. Hence HALT itself is non-computable. This is often expressed
by saying that the Halting Problem is uncomputable.
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We thus have examples of c.e. sets HALT and ∅′ which are not computable, and
so their characteristic functions would be examples of non-computable functions.

4.3 Computation on strings

We have been using numbers for computability notions. We now fix an effective
one-to-one correspondence between the natural numbers and the binary strings so
that computability notions can be extended to strings.

DEFINITION 5. We fix the following one-to-one correspondence between the nat-
ural numbers and the binary strings:

0 ↔ Λ, 1 ↔ 0, 2 ↔ 1, 3 ↔ 00, 4 ↔ 01, 5 ↔ 10, 6 ↔ 11, 7 ↔ 000, . . .

Given a number n, the corresponding binary string is denoted by str(n). Given a
binary string σ, the corresponding number is denoted by num(σ).

This correspondence is effective: An algorithm for converting n to str(n) is
obtained as “write n+ 1 in binary notation (without leading zero) and then drop
(erase) the leading 1”. An algorithm for converting σ to num(σ) is obtained as
“prefix σ with an additional 1, regard the resulting string as and integer m written
in binary notation, and have the final result to be m− 1.”

With this effective correspondence, we can extend every computability notion
for numbers into one for strings, by converting (translating) between the two types
back and forth as needed.

In particular, we will say “the program P halts on input string δ with output
string σ” to really mean “the program P halts on input num(δ) with output
num(σ)”.

Another example: We will say that a function f : {0, 1}∗ → {0, 1}∗ is effectively
computable to really mean that the function g : N → N defined by the “transla-
tions” g = num ◦f ◦ str (i.e., g(n) = num(f(str(n)))) is effectively computable.

We will say that a set of strings is c.e., if the corresponding set of numbers is
c.e.

We could also as easily define computability notions for functions from numbers
to strings and vice versa, and in general for subsets of Nm × ({0, 1}∗)n.

4.4 Effective topological notions

The idea of effective computability has been extended to topological notions and
is used extensively in an area called descriptive set theory. Many classical notions
of analysis get refined this way. Here we describe two such notions, effective open
and uniformly effective open.

Recall that an open set G in the Cantor space is a union of basic intervals,
G =

⋃
σ∈S N(σ) for some set S of strings. We refine this definition by requiring

the index set over which the union is taken to be computably enumerable:
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DEFINITION 6 Effective Open Sets. A subset G of {0, 1}N is called effective
open or computably enumerable iff there is a c.e. set S of strings such that

G =
⋃
σ∈S

N(σ).

A c.e. set of strings is one whose members can be listed by a program (or a
partial computable function), so a set G is effective open iff there is a program
which prints a list of basic intervals whose union equals G. More precisely, G is
effective open iff there is a partial computable function σ : N → {0, 1}∗ such that

G =
∞⋃
n=1

N(σ(n)),

where we take N(σ(n)) = ∅ if σ(n) is not defined.
Finally we define what it means to say that the sets G1, G2, G3, . . . are uniformly

effective open. To be uniformly effective open, it is not enough that each set Gn in
the sequence be individually effective open, but the entire sequence must be listed
together in an effective way, i.e., there should be a single program listing a double-
sequence of basic intervals whose unions form these sets. More precisely:

DEFINITION 7 Uniformly Effective Open Sets. A sequence of sets G1, G2, . . .
is uniformly effective open if there is a partial computable function σ : N ×N →
{0, 1}∗ such that

Gn =
∞⋃
m=1

N(σ(m,n)),

where we take N(σ(m,n)) = ∅ if σ(m,n) is undefined.

5 VON MISES’ DEFINITION OF RANDOM SEQUENCE

Undoubtedly, one of the most successful achievements of twentieth century math-
ematics was the measure-theoretic axiomatization of probability. Proposed by
Kolmogorov in 1933, it soon became the essential basis for the study of mathe-
matical probability theory. The generality and elegance of this abstract axiomatic
approach — a hallmark of modern formalism mathematics — found wide applica-
bility in almost every situation in probability theory. However, this method with
its formalist nature does not directly involve the notion of randomness in any fun-
damental way, and the rather intuitionistic problem of defining randomness did
not arise in its course of development.

Richard von Mises was the first person to focus clearly and deeply on the mathe-
matical essence of randomness in sequences. His pioneering work early in the twen-
tieth century on developing a frequentist theory of probability ([Von Mises, 1919;
Von Mises, 1981], already shed considerable light on the heart of the matter of



Mathematical Foundations of Randomness 29

randomness, as Kolmogorov himself has remarked [Li and Vitanyi, 2008, p.50]. For
von Mises, random sequences, which he called “collectives”, formed the essential
basis of his frequentist theory. Subsequently, his work led other mathematicians to
carry out further investigations that have clarified the notion of randomness signif-
icantly. The far reaching implications of his work is still deeply influencing current
research on randomness. Kolmogorov is known as the father of modern mathemat-
ical probability theory, and it is perhaps appropriate to call von Mises the founder
of the modern mathematical theory of randomness in infinite sequences.

Here we only briefly outline the central ideas of von Mises concerning random
sequences. For more details, see his own works [Von Mises, 1919; Von Mises, 1981]
and works of van Lambalgen [1987a; 1987b; 1996; 1990].

5.1 Von Mises’ definition

The condition of the Borel strong law can be stated as saying that the relative
frequency of successes in initial parts of the infinite binary sequence under consid-
eration should have a limiting frequency of 1/2. Recall that this is a condition for
unbiasedness (subsection 3.2).

The fundamental intuition of von Mises is often summarized as the invariance
of limiting frequency under (admissible) place selections.

To understand what this means, consider an infinite sequence of turns of a gam-
bling wheel — turn 1, turn 2, and so on — with each turn having two equiprobable
outcomes 0 or 1. Let the sequence x = 〈xn〉 denote the outcomes of the turns (if
the n-th turn of the wheel produces a 0, then xn = 0, else xn = 1).

Suppose that a gambler is observing the outcomes of the turns, and before every
turn the gambler decides whether to bet on that turn or not, perhaps basing the
decision on the finite past history of earlier outcomes of the turns.

Example 1: The gambler chooses to bet on every third turn (turns 3, 6, 9, etc),
disregarding earlier history of outcomes altogether (“lucky-third” rule).

Example 2: The gambler chooses to bet after any run of five consecutive 0s.
In any case, bets may not get placed on every turn, but rather on selected

turns determined by the gambler’s strategy. This results in a subsequence of turns
selected for placing bets, say turns n1 < n2 < · · · < nk < . . . , as shown below:

1 2 . . . n1−1 n1 n1 +1 n1 +2 . . . n2−1 n2 · · ·
skip skip . . . skip bet skip skip . . . skip bet · · ·

Using the strategy, the gambler selects turn n1 for placing his first bet, turn
n2 for the second bet, etc. In the first example, the subsequence of selected turns
for betting is 3 < 6 < 9 < . . . , independent of the outcome of the turns. In the
second example, the turns on which the gambler bets will depend on the particular
infinite sequence of turn outcomes.

Once the turns for betting are all selected, suppose we restrict to the outcome
values at only these selected turns — discarding (erasing) the outcome values
of those turns on which bets are not placed — and then compute the limiting
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frequency for this new restricted subsequence of outcomes. According to von Mises,
if the original sequence of outcomes were random, then this new limiting frequency
would still equal 1/2, regardless of the gambling strategy being used! Moreover,
this crucial property is the essence of randomness, and therefore characterizes
it:

DEFINITION 8 Von Mises Randomness, Initial Version. An infinite binary se-
quence x ∈ {0, 1}N is random if whatever be the gambler’s strategy and the
resulting turns n1 < n2 < . . . selected for placing bets, the subsequence of x
obtained by restricting to these selected turns still has limiting frequency 1/2, i.e.:

lim
m→∞

1
m

m∑
k=1

xnk
=

1
2
.

In von Mises’ terminology, a “turn” (on which the gambler may or may not bet)
is called a place, and a “strategy” by which the gambler selects which turns to bet
on, is called a place selection rule.

The “invariance of limiting frequency under admissible place selections” can
now be understood as a form of unpredictability arising from unbiasedness: No
betting strategy of place selections can succeed by improving predictability within
a random sequence, since such selections will leave unbiasedness intact (identical
limiting frequency for the resulting subsequence). In other words, not only is the
entire sequence unbiased (limiting frequency of 1/2), but there is no hidden biased
or unstable subsequence that can be found (by a gambler) using a suitable strategy
of place selection.14

We quote some relevant remarks of Feller:

“The painful experience of many gamblers have taught us the lesson
that no system of betting is successful in improving the gambler’s
chances.” [Feller, 1968, VIII.2, p. 198]

. . . “[U]nder any system the successive bets form a sequence of Bernoulli
trials with unchanged probability of success. . . . The importance of
this statement was first recognized by von Mises, who introduced the
impossibility of a successful gambling system as a fundamental ax-
iom.” [Feller, 1968, VIII.2, p. 199]

“Taken in conjunction with [the] theorem on impossibility of gambling
systems, the law of the large numbers implies the existence of the
[limiting frequency] not only for the original sequence of trials but also
for all subsequences obtained in accordance with the rules of [place
selection].” [Feller, 1968, VIII.4, p. 204]

14For simplicity we are restricting (by using the von Neumann trick if necessary) only to
the special limiting frequency value of 1/2 instead of the general value p (0 < p < 1) used
by von Mises. For us, this does not cause much loss of generality as we are focusing only on
randomness. Von Mises’ chief objective was to develop the frequentist theory of probability.
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5.2 Mises-Wald-Church randomness

We first formalize the earlier definition of von Mises Randomness.
A place selection rule or betting strategy is a partial function ϕ : {0, 1}∗ → {0, 1}.

(It tells the gambler when to bet: For a binary sequence 〈x1, x2, . . . , xn, . . . 〉 of
outcomes, the n-th turn is selected for betting according to the strategy ϕ if and
only if ϕ(〈x1, x2, . . . , xn−1〉) = 1.)

Given a place selection rule ϕ and x ∈ {0, 1}N such that ϕ(〈x1, x2, . . . , xn−1〉) =
1 for infinitely many n, let n1 be the least n for which ϕ(〈x1, x2, . . . , xn−1〉) = 1,
n2 be the next such n, etc. Then the sequence 〈xn1 , xn2 , . . . , xnk

, . . . 〉 is called
the ϕ-selected part of x. (It is the subsequence of x obtained by restricting x to
those indexes which are selected for betting according to ϕ.) Thus we say that the
ϕ-selected part of x has limiting frequency 1/2 iff

lim
m→∞

1
m

m∑
k=1

xnk
=

1
2
.

We can now try to restate the definition of von Mises randomness as follows.
A sequence x ∈ {0, 1}N is random iff for all place selection rules ϕ for which
ϕ(〈x1, x2, . . . , xn−1〉) = 1 for infinitely many n, the ϕ-selected part of x has limiting
frequency 1/2.

We run into a problem with this definition with its unrestricted use of the
universal quantifier in the clause “for all place selection rules”. Given any sequence
x ∈ {0, 1}N, put A = {n : xn = 1} if this set is infinite, otherwise put A =
{n : xn = 0}. Define ϕ by the condition that ϕ(〈y1, . . . , yn−1〉) = 1 if n ∈ A
and = 0 otherwise. It is easy to that the the ϕ-selected part of x has a limiting
frequency equaling either 0 or 1, violating randomness. It follows that no sequence
is random!

However, as von Mises points out, this is not a real problem. The defect of the
argument is that the rule ϕ used in the argument selects a place n based on the
outcome value xn, and such rules are of course not allowed [Von Mises, 1981, p.
25]. The place selection rules in the definition of randomness are restricted to only
certain admissible rules, instead being completely arbitrary, and the problem is
resolved.15

Here is the corrected definition in its original intended form:

DEFINITION 9 Von Mises Randomness. A sequence x ∈ {0, 1}N is random iff
for all admissible place selection rules ϕ for which ϕ(〈x1, x2, . . . , xn−1〉) = 1 for
infinitely many n, the ϕ-selection of x has limiting frequency 1/2.

15From certain sections of von Mises’ detailed discussion of the concept [Von Mises, 1981], it
is also clear that he wants a place selection rule, or betting strategy, to be “specifiable in some
effective manner”. In the modern language of mathematical logic, that could be interpreted
as some notion of effective description (say as being effectively computable or at least being
definable in some definite language), but von Mises does not precisely specify any such rigorous
criterion for defining “admissible”.
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Abraham Wald [1936] then showed that whenever the set of admissible place
selection rules is countable, random sequences according to the von Mises definition
do exist, and form a set of full-measure.

This implies that if “admissible” is taken to mean any form effective specifiabil-
ity using finite sequence of symbols from a finite alphabet (such as effective com-
putability), then the set of admissible rules remains countable, and so von Mises
random sequences would exist.

In 1940, Alonzo Church [1940] proposed the use of effectively computable (total)
place selection rules for precisely defining von Mises randomness. Such random
sequences are now called Church randomness or Church stochastic.

Using partial computable place selection rules, we have the following defini-
tion:

DEFINITION 10 Mises-Wald-Church Randomness. A sequence x ∈ {0, 1}N is
Mises-Wald-Church random iff for all partial computable place selection rules ϕ
for which ϕ(〈x1, x2, . . . , xn−1〉) = 1 for infinitely many n, the limiting frequency
of x under ϕ-selection is 1/2.

Thus, in 1940, the first precise and rigorous mathematical definition of random-
ness for infinite sequences was found.

In recent literature, the term stochastic is used for randomness defined using
limiting frequency after place selections, and so Mises-Wald-Church random se-
quences are now also called Mises-Wald-Church Stochastic.

As explained in Section 3, any notion of randomness must be subjected to the
fundamental stochastic laws such as Borel strong law, Borel normality, Symmetric
Oscillation, etc.

It is easy to see that every Mises-Wald-Church random sequence satisfies the
condition of the Borel strong law, since the place selection rule ϕ defined by ϕ(σ) =
1 for all σ is computable, and the resulting subsequence is simply the entire original
sequence.

It can also be shown that Mises-Wald-Church random sequences are Borel nor-
mal.

But a big blow to the definition came when in 1939 Ville [1939] proved that
there are Mises-Wald-Church random sequences which do not satisfy the Law of
Symmetric Oscillations: For certain Mises-Wald-Church random sequences x, the
relative frequency satisfies 1

nSn[x] > 1/2 for all n. In terms of random walk, this
means the position of the walking person stays always to the right of the origin, a
violation of the Law of Symmetric Oscillations.

The definition of Mises-Wald-Church randomness can be viewed as the impos-
sibility of any successful algorithmic betting strategy of place selections. Unfor-
tunately, Ville’s result shows that this condition is not sufficient to guarantee the
randomness of a sequence (recall from subsection 3.1 that the condition must be
necessary for randomness).

The method outlined in subsection 3.8 of capturing the random sequences us-
ing “effective stochastic laws converging effectively” has turned out to be more
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successful, and we discuss it in Section 6.
If, instead of considering betting strategies of place-selection and the resulting

limiting frequency, we consider capital betting strategies (martingales), then the
corresponding analog of the Mises-Wald-Church definition — namely the impos-
sibility of any successful suitably algorithmic capital betting strategy — turns out
to be more well behaved (see Section 11).

6 MARTIN-LÖF AND SOLOVAY RANDOMNESS

6.1 Martin-Löf randomness

Subsection 3.8 outlined the program of defining a sequence x to be random if
it satisfies all “effective probabilistic laws of randomness”, where an “effective
probabilistic randomness law” is simply an “effective full-measure” set (or, what
we called a “typical property” in subsection 1.6). Going to complements, this
means that x should not belong to any “effective measure-zero” set (or, in the
language of subsection 1.6, that x should not have any “special property”.)

The question now, therefore, is how to precisely define “effective measure-zero”.
Twenty-five years after the Mises-Wald-Church definition, in 1965, a satisfactory
solution to this crucial problem was found by the Swedish mathematician Martin-
Löf [Martin-Löf, 1966] , which we now describe.16

Recall that (Section 2) a set E has measure-zero if there is a sequence of open
sets G1, G2, G3, . . . with each Gn covering E and µ(Gn) < 1/n. Recall also that
such a sequence of sets G1, G2, G3, . . . is uniformly effective open if there is a single
program listing the basic intervals whose unions form these sets (subsection 4.4).

Martin-Löf’s fundamental idea was that by simply taking the sequence of cov-
ering sets Gn to be uniformly effective open, we get the correct notion of “effective
measure-zero”.

A constructive proof of a probabilistic law of randomness (such as the Borel
strong law) would usually proceed this way: Given n, one uniformly builds an
effective open set Gn of measure less than 1/n such that every sequence in the
complement of Gn satisfies the law in question, which immediately establishes that
the set of sequences satisfying the law has full measure. The strongest probabilistic
law of randomness that we have mentioned, the Law of Iterated Logarithms, is
known to have such a constructive proof [van Lambalgen, 1987b, p. 733].

We thus have the following definitions of effective measure-zero and effective
full-measure sets:

16Martin-Löf was visiting Kolmogorov in Moscow during 1964–65 and they were working on
randomness and complexity of finite objects (Kolmogorov Complexity). Note also that during
the twenty-five year period 1940–65, computability theory (recursion theory) was progressing
vigorously and expanding its domain into classical analysis, leading to highly refined development
of the notion of effectiveness, including effective open sets and effective Borel sets by Kleene,
Addison, Mostowski, and others. See [Moschovakis, 1980] for more details.
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DEFINITION 11 Martin-Löf. A set E ⊆ {0, 1}N is effective measure-zero iff there
is a uniformly effective sequence open sets, say G1, G2, . . . , such that for all n:

(a) E ⊆ Gn, and

(b) µ(Gn) < 1/n.17

A set has effective full-measure if its complement is effective measure-zero.

For example, the set of all sequences with bit value 0 at every third position is
effective measure-zero.

Another example of an effective measure-zero set is the set of all sequences in
which the bit pattern 0110110 does not occur.

One can think of the sets G1, G2, G3, . . . as providing a uniformly effective
sequence of statistical tests for randomness with stronger and stronger significance.

Finally, we define Martin-Löf Randomness.

DEFINITION 12 Martin-Löf. A sequence x ∈ {0, 1}N is Martin-Löf Random iff
x does not belong to any effective measure-zero set, i.e., iff x belongs to every
effective full-measure set.

We can think of an effective probabilistic randomness law L to be simply an
effective full-measure set L , and think of a sequence x to be satisfying the law L
iff x ∈ L. We can then restate the definition of Martin-Löf randomness as: x is
Martin-Löf Random iff it satisfies all effective probabilistic randomness laws.

Martin-Löf also established the remarkable fact that the the set of all Martin-
Löf random sequences itself has effective full-measure, that is, the set U of non-
Martin-Löf-random sequences is effective measure-zero. This means that there is
a sequence of uniformly effective open sets U1, U2, U3, . . . such that µ(Un) < 1/n
and U ⊆

⋂
n Un. But also U ⊇

⋂
n Un by definition. Hence U =

⋂
n Un, and

thus the sequence 〈Un〉 acts as a universal test for Martin-Löf randomness: x is
Martin-Löf random iff x 6∈ Un for some n. This universal test condition gives an
especially simple characterization of Martin-Löf randomness.

6.2 Solovay’s characterization of randomness

The Borel-Cantelli Lemma of probability theory implies that if G1, G2, . . . , Gn, . . .
is an infinite sequence of events and the sum of their probabilities converges (as an
infinite series), then with probability one, only finitely many of these events can
occur.

17Of course, instead of the measure bounds 1/n for Gn, one can use any sequence of positive
rational numbers εn so long as εn can be effectively computed from n and the sequence 〈εn〉
converges to zero. It is not hard to see that that if a computable sequence of positive rationals
〈rn〉 converges to zero, then given any other computable sequence of positive rationals 〈sn〉 → 0,
there is a computable subsequence 〈rnk 〉 of the original sequence with rnk < sk for all k.
Therefore, the choice of the bounding sequence is completely arbitrary, so long as it forms a
computable sequence of positive rationals converging to zero.
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The following remarkable result of Solovay shows that this “Borel-Cantelli condi-
tion” characterizes Martin-Löf randomness, provided that we restrict the sequence
of open sets to be uniformly effective.

THEOREM 13 Solovay. An infinite binary sequence is Martin-Löf random iff for
every uniformly effective sequence G1, G2, . . . , Gn, . . . of open sets,

∞∑
n=1

µ(Gn) <∞ =⇒ x belongs to only finitely many Gns.

See Chaitin [1992] for a proof.
The above condition (in the theorem) for characterizing Martin-Löf randomness

is known as Solovay Randomness.
Note that in Solovay’s characterization, the infinite series

∑
n µ(Gn) is simply

assumed to converge, there is no need to assume that it converges in any effective
way.

6.3 More general probability spaces

Martin-Löf’s and Solovay’s definitions for randomness are so general and flexible
that they can be applied to any effective separable complete metric space with
an effective probability measure. This includes a very large class of probability
spaces, including many (perhaps most) probability spaces arising in practice.

Thus the Martin-Löf definition provides a way of assigning a precise meaning of
the word “random” in quite general settings. See [González, 2008; Hoyrup, 2008]
for more on this.

7 RANDOMNESS OF FINITE STRINGS: KOLMOGOROV COMPLEXITY

We now turn to the “Laplacian Problem” mentioned in the introduction, namely,
that of defining randomness for finite sequences. Laplace’s observation was that
among all the sequences of a fixed large size, only a few “regular” ones have a “rule
that is easy to grasp” and Laplace attributes this to those sequences having “a
regular cause”. The other sequences, “incomparably more numerous”, are irregular
and we therefore take them to be the random ones.

If we follow this “Laplacian Program” then our problem reduces to precisely
isolating the notion of a sequence having a “regular cause” behind it (or being
generated by a “rule that is easy to grasp”). This is precisely the philosophical
point missing from classical probability theory, which fails to distinguish the strings
which we think of being “regular”.

This problem was resolved quite satisfactorily in the mid 1960s by Solomonoff,
Kolmogorov, and Chaitin. Their theory provided a measure for the information
content or the complexity of a binary string (or more generally of a finite object
which can be represented by a binary string) by taking it to be the length of the
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“shortest possible complete description” of the string, or its description-complexity.
The idea is based on our intuition that a relatively simple object will have a short
complete description, while a highly complex one will lack a short description
which can completely specify it.

Moreover, the related notion of algorithmic probability invented by Solomonoff
assigns a form of a priori universal probability to binary strings. But unlike clas-
sical probability, it takes into account the information-complexity of the string
when assigning the probability. As a result, its probability assignments sharply
discriminates between the regular strings and the random ones, and provides an
explanation of Laplace’s intuition into why the regular strings are more likely to
have a “cause”.

We have been using the term “description” freely, without much qualification.
It is important to precisely specify what is meant by a “description”. Unrestricted
use of the term, as done in natural languages, causes problems, as shown by the
following.

7.1 The Berry paradox

Consider the definition:

The Berry number is the smallest positive integer that cannot be de-
scribed in less than eighteen words.

Since only a finite number of positive integers can be described using less than
eighteen words, the Berry number is well-defined, and by definition it cannot be
described in less than eighteen words. Yet the above definition describes it using
only seventeen words. This is the Berry paradox.

The problem here is with the use of the property of “a number being described
in certain words”, which is not precisely defined, and cannot be defined, as used
in the definition of the Berry number, without being circular.

Whatever be its resolution, the Berry paradox reminds us that we have to
be careful when talking about the “description” of a number or a string. Once
again the concept of algorithm or effective computation allows us to make this
precise: We restrict only to “algorithmic descriptions” or “effective descriptions”
as defined below. Formally, by an algorithm or program we mean a Post machine
program.

DEFINITION 14 Algorithmic Description. Let P be a program and σ be a binary
string. We say that a string δ is a P -description of σ, or that δ P -describes σ, if
the program P on the input δ halts with output σ.

The idea here is that whenever the program P halts on the input δ with output
σ, we think of the string δ as being an algorithmic description of the string σ,
according to algorithm P . The computation of σ from input δ by P is thought
of as P reconstructing σ from its description δ. This is equivalently called the
decompression of δ by P (into σ). The description δ is intended to be shorter
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than the object being described (the string σ), and therefore it can be viewed as
a “compressed” version of the string σ.

Given a program P and a string σ, we now look for the shortest string(s) P -
describing σ, and take the length of such string(s) as a complexity-measure of the
string σ with respect to P . Of course for certain programs P , a string σ may not
have any P -description, in which case the complexity of σ (with respect to P ) is
considered to be infinite.

DEFINITION 15 Algorithmic P -Complexity. The plain algorithmic complexity of
a string σ with respect to the program P , or simply the P -complexity of σ, denoted
by CP (σ), is the length of the shortest string(s) P -describing σ, provided that there
are such strings. If there is no string which P -describes σ, we let CP (σ) = ∞.

There are programs P such that the P -complexity CP (σ) is a finite number for
all strings σ (i.e., P has the property that ∀σ∃δ(δ P -describes σ)). Let us call
such programs P to be complexity-finite.

An example of a complexity-finite program is the empty program E (the pro-
gram with no instructions), which computes the identity function: Every string
E-describes itself.

If CP (σ) is much smaller than the length of σ we think of σ being “well-
compressed” by P , since there are P -descriptions of σ much shorter than σ. The
ratio |σ|/CP (σ) is the “compression factor” for the string σ, with respect to P .
For the empty program E, CE(σ) = |σ| for all σ, and so the compression factor is
1 for all strings, meaning no string is really “compressed” by E.

On the other hand, there are complexity-finite programs P which compress
infinitely many strings by arbitrarily large factors.

Example. Let P be the program informally described as follows. If the first
symbol of the input string σ is 0, then P erases this leading 0, shortening its length
by 1, outputs the resulting string, and halts; else P outputs the string consisting
of 2|σ| 1s and halts. Then CP (σ) ≤ |σ| + 1 for all σ, since 0σ is a P -description
of σ, so P is complexity-finite. But for any n, if we put δn = 1n and σn = 1m

where m = 2n, then δn is a P -description of σn, so CP (σn) ≤ |δn| = n, so the
compression factor for σn is |σn|/CP (σn) ≥ 2n/n. Given any number a, we can
find n such that 2n/n > a, and so the strings σn, σn+1, . . . are all compressed by a
factor more than a. In particular, the string σ10 (string of 1024 1s) is compressed
by P to the string 1111111111, thus by a factor more than 100. More drastically,
the string σ64 is compressed by a factor of 288230376151711744.

However, a simple but important counting argument (an example of the so-
called pigeon-hole principle) shows that no method can compress strings too uni-
formly.

Given an arbitrary partial function f : {0, 1}∗ → {0, 1}∗, we think of f being a
general method of string-description, and think of δ being an f -description of σ if
f(δ) = σ. (The P -descriptions given by programs P are special “algorithmic” case
of this.) We say that a string σ is compressed by f if there is an f -description of
σ which is shorter than σ. More generally, given a positive integer b, we say that
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σ is b-compressed by f if there is an f -description of σ which is shorter than σ by
at least b bits (i.e., if ∃δ(f(δ) = σ ∧ |δ| ≤ |σ| − b)). Thus σ is compressed by f iff
σ is 1-compressed, that is by at least 1 bit.

THEOREM 16 “Only a small minority of strings compress”. For any string-
description method f , less than half of all the strings of length ≤ k can be com-
pressed (i.e. 1-compressed) by f . More generally, less than a fraction of 1/2b of
all the strings of length ≤ k can be b-compressed by f .

Proof. For any k and b, let A be the set of strings of length ≤ k, B be the set of
strings of length ≤ k − b, and C be the subset of A consisting of those members
which can be b-compressed by f . Note that there is a one-to-one correspondence
between C and a subset of B (for each σ ∈ C, fix δσ ∈ B with f(δσ) = σ; then the
correspondence σ ↔ δσ is one-to-one). Also note that |A| (number of members of
A) equals 2k+1 − 1 and |B| = 2k−b+1 − 1, hence the fraction of those strings in A
which are b-compressed equals

|C|
|A|

≤ |B|
|A|

=
2k−b+1 − 1
2k+1 − 1

<
2k−b+1

2k+1
=

1
2b
.

�

For example, among the strings of length not exceeding a thousand (or any other
number) bits, more than 99.9% will either not compress at all or compress by at
most 9 bits, whatever be the method of string description.

We are of course interested in shortest possible descriptions or best possible
compression factor. Therefore, among the complexity-finite programs we prefer
the ones which tend to give overall shorter descriptions (better compression) for
strings. In other words, given complexity-finite programs P and Q, we regard P to
be “better” than Q if the P -complexity of σ, CP (σ) is lower than the Q-complexity
CQ(σ) for all strings σ. We can then try to choose a “best” complexity-measure
and use it as a standard.

Unfortunately, it is impossible to get such a “best” complexity-finite program in
the uniformly strict sense above, because for every complexity-finite program one
can find another one which lowers complexity (compresses better) for an arbitrarily
large number of strings by an arbitrarily large amount.18

Therefore, we will compare programs using a “general overall sense” rather than
the uniformly strict sense above, relaxing the relation of one program being better

18More precisely, for every complexity-finite P and every m and n, there is another complexity-
finite program Q such that CQ(σ) < CP (σ) − n for at least m strings σ. Proof: Without

loss of generality assume that m = 2k − 1 for some k, and fix distinct σ1, . . . , σm such that
CP (σj) > n+ k for j = 1, . . . ,m. This can be done since there are only finitely many strings σ
with CP (σ) ≤ n + k. Also let α1, . . . , αm be a non-repeating listing of all strings of length less
than k. Now a program P ′ can be so designed that it contains coded copies of σ1, . . . , σm inside
it, and behaves in the following way: If the input is αj (1 ≤ j ≤ m), then output the string σj

and halt; otherwise, truncate the input string by removing its first k symbols and emulate the
program P with this truncated input.
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than another as follows. For programs P and Q, let us define:

P matches Q (in terms of complexity) ⇐⇒ ∃k∀σ(CP (σ) ≤ CQ(σ) + k),

i.e., from a complexity viewpoint, the program P is regarded to be as good as
the program Q or better (“P matches Q”) if the P -complexity of every string is
less than its Q-complexity modulo some constant independent of the string. Let
us also call programs P and Q to be complexity-equivalent if each one matches the
other, i.e., if the difference between P -complexity and Q-complexity is bounded
uniformly by some constant.

It now turns out that in this sense, there is indeed a “best compressing” or
optimal program, which is also unique in the sense that any other optimal program
is complexity-equivalent to it.

DEFINITION 17 Optimal or Universal Programs. A program is called universal,
or complexity-optimal, or simply optimal if it matches every program.

THEOREM 18 Solomonoff-Kolmogorov-Chaitin Invariance Theorem. There is
an optimal program U . Moreover, every optimal program is equivalent to U .

Proof. A program U is defined as follows. Given an input string σ, the program
U finds the length m of the longest prefix of σ consisting of 0s (m = 0 if σ begins
with 1 or is empty), and erases this initial run of 0s in σ. If the remaining string
begins with a 1, that symbol is also erased, with the final result being the string
ρ. U then runs the program with Gödel number m on the input ρ.

To show that U matches P for any P , let e = e(P ) be the Gödel number of P
and let kP = e + 1. For any string σ, let δ be a shortest P -description of σ, so
that CP (σ) = |δ|. Put τ = 0e1δ, then τ is a U -description of σ, so

CU (σ) ≤ |τ | ≤ e+ 1 + |δ| = CP (σ) + kP ,

where kP = e+ 1 is independent of σ. �

We now fix a particular optimal U and define the plain algorithmic complexity
of a string σ, C(σ), to be CU (σ).

DEFINITION 19 Universal Plain Algorithmic Complexity C. Define the plain
algorithmic complexity function C by C(σ) = CU (σ), where U is an optimal
program fixed permanently.

Being optimal, U matches E, where E is the empty program with E-complexity
CE(σ) = |σ|. So:

COROLLARY 20. There is k such that for all σ, C(σ) ≤ |σ|+ k.

The plain algorithmic complexity C(σ) of a string σ is also known as Kolmogorov
complexity. The term “Kolmogorov complexity” is used in a wide and general sense
as synonym for algorithmic complexity, and so prefix-free complexity (described
next) is also known as Kolmogorov complexity.
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The invariance theorem is quite remarkable as it shows that the concept of plain
algorithmic complexity is essentially unique and independent of the particular
model of computation being used.

The plain algorithmic complexity C(σ) of a string σ, can usefully be viewed as
a measure of the (algorithmic) information content of the string σ. We therefore
have a formal definition for the somewhat vague notion of information contained
in a finite object.19

DEFINITION 21 Randomness and Compressibility for Finite Strings. Let σ be
a string and b be a positive integer. We then define:

(a) σ is b-compressible if C(σ) ≤ |σ| − b;

(b) σ is compressible if it is 1-compressible, i.e., if C(σ) < |σ|; and

(c) σ is random if σ is not compressible, i.e., if C(σ) ≥ |σ|.

THEOREM 22 Existence of Random Strings. For every n there are random
strings of length n. More generally, for any n and b > 0 at least 2n − 2n−b+1 + 1
strings of length n are b-incompressible.

Proof. Fix n and for each σ with |σ| = n, pick a string δσ of smallest length
describing σ. The strings δσ are distinct for distinct σ, and there are less than 2n

strings of length less than n, hence by the pigeon-hole principle |δσ| ≥ n for some
σ of length n, so that C(σ) ≥ n, and so σ is a random string of length n.

The second statement is proved similarly. �

For finite strings, note that we really have relative degrees of randomness. If we
have two thousand-bit strings one of which is not compressible and the other,
say, 2-compressible but not 3-compressible, then the first one is more random
than the second one, but only slightly more so. The complexity measure C(σ)
therefore provides a measure for the degree of randomness in σ: The smaller the
value of C(σ) compared to |σ|, the less random it is. Among all binary strings of
a fixed length, the most random are the ones on which the function C achieves
its maximum value, and the most non-random ones are the ones on which C is
minimized.

Also, short finite strings (such as 111) can be random yet quite simple. This is
not surprising when we regard the strings as being produced by a fixed number
of flips of a fair coin: If a series of three flips produces 111, there is no reason
to the suspect the randomness of the process and so it is easy to also accept the
outcome 111 as random. However, a long string of all 1s (say a million bits, all

19Information content as defined by algorithmic complexity should be contrasted with the one
known as Shannon entropy in “classical” information theory, where it is defined in probabilistic
terms for random variables. While Shannon’s theory of information focuses on an entire set of
strings associated with varying probabilities, the Kolmogorov theory focuses on an individual
string. However, the two notions are closely related, see [Li and Vitanyi, 2008, p.603–608].
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1s) is dramatically non-random and will cause us to question the randomness of
the process generating it.

THEOREM 23. The complexity function C is not computable.

Proof. (The proof resembles the argument of the Berry paradox.)
If C were computable then one can define a program P which given any string

σ as input computes a string σ∗ such that C(σ∗) > 2|σ|.
By the invariance theorem, there is a constant k such that C(σ) < CP (σ) + k

for all σ.
Let σ = 1k+1. Then C(σ∗) > 2|σ|, but since σ is a P -description of σ∗ so

C(σ∗) ≤ CP (σ∗) + k ≤ |σ|+ k < 2|σ|, a contradiction. �

The plain complexity function C also satisfies much of the intuitive concepts
relating to “information content of a finite object.” For example, if σ is a long
string with significant information content, the information content will not double
in the string σσ, because of redundancy of information: If σ can be described, so
can σσ, with little additional verbiage. To put it differently, every program can
be modified by adding only a few lines where the final output is duplicated by
“post-processing”. We therefore have:

THEOREM 24. For some k, C(σσ) ≤ C(σ) + k for all σ.

Random finite strings also satisfy a very general “stochastic” property. Let
R be a property of binary strings, that is R ⊆ {0, 1}∗. We say that a binary
string σ satisfies the property R if σ ∈ R, and we say that almost all strings
satisfy the property R if the fraction of the strings of length n which satisfies R,
|{σ ∈ R : |σ| = n}|/2n, approaches 1 as n approaches ∞. For a proof of the
following result, see [Sipser, 1997, p.219].

THEOREM 25 General Stochasticity for Finite Random Strings. If almost all
strings satisfy a computable property R, then all except a finite number of random
strings satisfy R. The result also holds for b-incompressible strings (for any b > 0).

More properties of general algorithmic complexity will be stated in the next
section using a variant of the plain complexity function C that we just described.
The new complexity function K will be obtained essentially by restricting the class
of strings that are allowed to be algorithmic descriptions: Descriptions must now
have a particular form of “unique readability” under some rule.

In either case, we see that by using the concept of algorithm to formalize the
fundamental idea of incompressibility or lack of shorter descriptions, we arrive
at a precise and invariant definition of randomness for finite strings that remark-
ably captures our intuition as described by Laplace. See subsection 8.2 for more
discussion on this topic.

We also note that while we used Post-Turing computability (Post Machine pro-
grams) as the model of computation, any other model of computation could be
used satisfactorily. A particularly recent new approach is to use Binary Lambda
Calculus, due to John Tromp [2009], to study Kolmogorov Complexity.
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The literature of modern research in the subject of Kolmogorov Complexity is
vast, see [Li and Vitanyi, 2008].

We end this section with a slight digression by giving a specific example of an
application of algorithmic complexity.

7.2 An application to Gödel incompleteness

While most strings are random, only a finite number of them can be proved to
be so. For each string σ, let nσ denote its complexity, i.e., nσ = C(σ). In any
formalization of mathematics (say ZFC), the relation “the complexity of σ is n”
can be formally expressed. Using a variant of the argument of the Berry paradox
and the fact that the set of theorems is computably enumerable, we now show that
while the sentences

“the complexity of σ is nσ”, σ = Λ, 0, 1, 00, 01, 10, 11, 000, 001, . . .

are all true, only finitely many of them can be proved in the theory. We therefore
have an “information theoretic version” of Gödel’s Incompleteness Theorem. It
also follows that there is a “maximum provable complexity”: For some m, no
string can be proved to have complexity more than m. [Boolos and Jeffrey, 1989;
Davis, 1980]

THEOREM 26 Gödel’s Incompleteness Theorem, Information-Complexity Ver-
sion. Only finitely many of the sentences of the form “C(σ) = n”, where σ ranges
over binary strings and n over natural numbers, are theorems of mathematics.

Proof. Let C(x, y) be the formula expressing “the complexity of x is y” in the
formal theory,20 and also for each string σ and natural number n, let pσq and pnq
be their formal names in the theory. Since the set of theorems can be computably
enumerated, there is a program (Post machine) P which, on input string δ, searches
through all the theorems to check if any of them is of the form C(pσq, pnq) with
n > 2|δ|, and if one such theorem is found, then outputs the string σ and halts.
Using the invariance theorem fix k such that C(σ) ≤ CP (σ) + k for all σ.

Now run the program P on the input string δk = 1k. Since there are infinitely
many n for which C(pσq, pnq) is a theorem, so P eventually finds such a one with
n = n0 > 2k and halts with an output string σ = σ0. Since C(pσ0q, pn0q) is true,
so C(σ0) = n0. But C(σ0) ≤ CP (σ0) + k ≤ |δk| + k = 2k < n0, a contradiction.

�

Interestingly, while only finitely many of the true statements “the complexity of
σ is nσ” can be proved (where, again, nσ denotes the unique natural number

20To do this, recall our fixed optimal program U , and let a relation HU be defined as
HU (x, n, y) ⇐⇒ U halts with output x in less than n program execution steps on some
input string of length not exceeding y. Since HU is computable, there is a formula ψ(x, n, y)
such that ψ(x, n, y) is provable if HU (x, n, y) is true, else its negation ¬ψ(x, n, y) is provable.
Now let C(x, y) be ∃n(ψ(x, n, y)) ∧ ¬∃z<y(∃n(ψ(x, n, z))).
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equal to the complexity of σ, i.e. nσ = C(σ)), it is also easy to see that the true
statement “the complexity of σ is ≤ nσ” can be proved for every string σ. In
other words, while we cannot prove that the complexity of σ equals nσ (except for
finitely many strings σ), we can prove, for every string σ, that the complexity of
σ does not exceed nσ (its true value), without being able to recognize that nσ is
indeed the true value for the complexity of σ.

For a critical discussion of the information-complexity version of Gödel incom-
pleteness, see [van Lambalgen, 1989].

8 THE PREFIX-FREE COMPLEXITY K

While the plain complexity measure C(σ) yields a quite satisfactory theory of
randomness for finite strings, the function C has some defects. One such defect
is about how it relates to the randomness of infinite sequences. If we look at the
initial segments σn = 〈x1, x2, . . . , xn〉 of an infinite sequence x, the complexity of
the n-th initial segment C(σn) drops by an undesirable amount for infinitely many
n, a phenomenon known as complexity oscillation [Li and Vitanyi, 2008, p.143].

Also, for the needs of Solomonoff’s theory of Algorithmic Probability, using the
literal value of plain complexity measure was not the correct formulation.

Several ideas were developed for dealing variously with such problems, such
as monotone complexity, process complexity, decision complexity, and uniform
complexity, but it is prefix-free complexity, also called prefix complexity in short,
due to Levin [Kolmogorov, 1974], Gács [1974] and Chaitin (see [Chaitin, 1992] for
references), that has now the become the standard for algorithmic (Kolmogorov)
complexity, and is denoted by K. It is very much like C, but with a more restricted
definition of “description”, where only certain classes of strings having a form of
unique readability are allowed to be descriptions.

Suppose that we want to pass a string σ directly to a Post machine program
as input by placing the string on the tape (all other bits being zero) and starting
the program with its head at the beginning bit of the string. Unfortunately, since
the tape consists only of 0s and 1s and no special termination markers, there is no
general way for any program to determine the end of the string. For example if the
head is started on a single 1 with all other tape bits being 0, how can the machine
know be sure that there is not another 1 after a trillion bits? Even simpler, how
can the machine know if this is supposed to represent the string 1, or 10, or 10000?
We express this problem by saying that the plain representation of a binary string
is not properly delimited. We circumvented this problem by converting a string
σ first to its number code num(σ) = n (say), and then passing the unary coded
version of n, namely 1n+10, to the machine. This coding is an example of a prefix-
free or self-delimiting code, where no code string is a proper initial segment of
another, and the input to the machine is uniquely determined. More generally,
a set S of strings is said to be prefix-free if no string in S is a prefix of another
member of S. The set of unary codes, 1n+10, n = 0, 1, 2 . . . , do form a prefix-free
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set, but is exponentially more inefficient than passing the plain binary string. The
following example describes a more efficient prefix-free coding.

Example 1 (The 1-code). Consider the scheme where each binary string σ
is coded by 1|σ|0σ. The string 1|σ|0σ will be called the 1-code of σ. For example,
the 14-bit string τ = 00011101011100 is the following 1-code:

1|τ |0︷ ︸︸ ︷
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

τ︷ ︸︸ ︷
0 0 0 1 1 1 0 1 0 1 1 1 0 0

Prefix-free 1-coding of τ

The set of 1-codes form a prefix-free set. In fact, by placing the head at the
beginning of the 1-code of σ, it can be uniquely decoded back to σ (by first
decoding from the initial unary part 1|σ|0). It will take 2|σ|+1 bits to encode the
plain binary string σ into its 1-code (e.g., in the above displayed example |τ | = 14,
so the 1-coded string has length 29).

Example 2 (The 2-code). An even more efficient prefix-free coding is be
obtained by the following scheme. Given a binary string σ, first express the length
|σ| of the string in plain binary notation bin(|σ|) and then prefix σ with the 1-
code of bin(|σ|) to get what we will call the 2-code of σ. For example, the the
string τ = 00011101011100 of the previous example has length 14, which in binary
notation is 1110. Since 1110 has length 4, its 1-code is 111101110, and we prefix
this to τ to get the 2-code of τ :

1| bin(|τ|)|0︷ ︸︸ ︷
1 1 1 1 0

bin(|τ |)︷ ︸︸ ︷
1 1 1 0

τ︷ ︸︸ ︷
0 0 0 1 1 1 0 1 0 1 1 1 0 0

Prefix-free 2-coding of τ

The 2-code gives a prefix-free encoding which will encode the string σ using |σ|+
2 log2 |σ|+ 1 bits. For example, the 2-code of τ shown above consists of 23 bits, a
saving of 6 bits over its 1-code.

Further improvements can be made by iterating this method.
Note that all these encodings are effective, i.e., there are simple algorithms for

decoding and encoding strings according to any of these schemes. Moreover, the
above examples are length-monotonic, meaning that longer strings have longer
codes.

A real world example of a prefix-free set (over the alphabet of decimal digits)
is the set of country dialing codes in the international telephone system.

We will now define prefix-free complexity, which is quite similar to plain com-
plexity and is defined as the length of the “shortest description”. The main dif-
ference is that while for plain complexity any binary string could possibly count
as a “description”, for prefix-free complexity only “prefix-free strings” (under an
effective prefix-free encoding) are allowed to be descriptions.

DEFINITION 27 Prefix-free Complexity Functions. A partial function ψ : {0, 1}∗ →
{0, 1}∗ mapping strings to strings is prefix-free if its domain is prefix-free. Given
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a partial computable prefix-free function ψ, the prefix-free ψ-complexity function
Kψ is defined by letting Kψ(σ) to be the length of the shortest string(s) δ for
which ψ(δ) = σ, and putting Kψ(σ) = ∞ no such strings exist.

An example of a prefix-free complexity function ψ2 is obtained by coupling the
decoding function for the 2-codes with the optimal program U for plain complexity
C as follows.

Let D2 denote the set of all 2-coded strings, so that D2 is a prefix-free set. The
decoding function d2 : D2 → {0, 1}∗ for decoding 2-codes establishes a one-to-one
correspondence between D2 and {0, 1}∗, but we regard it as a partial function
from {0, 1}∗ to {0, 1}∗. If a string δ is not in D2, then d2(δ) is not defined, so that
the domain of d2 is D2.

Now define ψ2 to be the function which, given an input string δ, regards δ as
2-code for some string, decodes it into d2(δ) and sends this decoded string to the
program U as input. U , in turn, runs with d2(δ) as input, and may halt with an
output string σ, in which case we put ψ2(δ) = σ. If δ is not in D2 so that d2(δ) is
not defined, or if U does not halt on input d2(δ), then we leave ψ2(δ) as undefined.

Clearly ψ2 is partial computable and its domain is a subset of D2, hence it
is a partial computable prefix-free function. Let the corresponding prefix-free
complexity function Kψ2 be denoted simply by K2.

We thus have an example of a prefix-free complexity function K2.
How does K2 compare with the plain complexity function C? Given a string

σ with plain complexity n = C(σ), let τ be a string of length n for which U
outputs σ on input τ . Let δ be the 2-code for τ , so that d2(δ) = τ , and thus
|δ| = |τ |+2 log2 |τ |+1 = n+2 log2 n+1. Now by definition, ψ2(δ) = σ. Moreover,
since encoding-decoding using the 2-code is length monotonic, so there is no string
δ′ shorted than δ with ψ2(δ) = σ, hence:

K2(σ) = |δ| = n+ 2 log2 n+ 1 = C(σ) + 2 log2 C(σ) + 1,

which shows that K2(σ) exceeds C(σ) by 2 log2 C(σ) + 1.
Of course K2 is not “optimal” and there are “better” prefix-free partial com-

putable functions ψ giving lower lower complexity values. In order to get a “uni-
versal optimal” function, we need the following fundamental result.

THEOREM 28 Invariance Theorem for Prefix-free Complexity. There is an par-
tial computable optimal prefix-free function ξ. That is, for each partial computable
prefix-free function ψ there is a constant k satisfying:

Kξ(σ) ≤ Kψ(σ) + k, for all σ.

DEFINITION 29 Universal Prefix-free Complexity. The Prefix-free Algorithmic
Complexity K(σ) is defined by taking K(σ) = Kξ(σ), where ξ is a permanently
fixed optimal partial computable prefix-free function.

How does the prefix-free complexity value K(σ) compare with the plain com-
plexity value C(σ)?
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Roughly speaking, since fewer strings are allowed to be descriptions of σ under
prefix-free complexity K, we may expect a somewhat higher value for the prefix-
free complexity K(σ) than C(σ) (modulo a constant). This indeed turns out to
be true.

On the other hand, we can use 2-codes to convert any plain description δ into a
prefix-free description of length |δ|+ 2 log2 |δ|+ 1. More precisely, for the specific
prefix-free complexity function K2 in the example above, we saw that

K2(σ) = C(σ) + 2 log2 C(σ) + 1.

For the optimal prefix-free complexity K, we would get an overall lower value for
K(σ) than K2(σ) (modulo a constant), and so C(σ) + log2 C(σ) + 1 is only an
upper bound for K(σ). The following result gives a standard upper bound for
K(σ).

THEOREM 30. Modulo additive constants,

C(σ) ≤ K(σ) ≤ C(σ) + 2 log2 |σ|.

Proof. The first inequality follows from the invariance theorem for C (optimality
of C) since the partial computable function ξ used to define K is just one specific
“program”.

To prove the second inequality, note that we had earlier already established that
K2(σ) ≤ C(σ) + 2 log2 C(σ) and C(σ) ≤ |σ|, modulo constants. Combining the
two, the result follows. �

Of course, using more efficient prefix-free encodings, this result can be further
sharpened.
K has many nice properties which are lacking in C.
From now on, we will be using the prefix-free complexity function K in place

of C. In particular, the definitions for compressibility and randomness for finite
strings are redefined as follows.

DEFINITION 31 Randomness and Compressibility for Finite Strings. Let σ be
a string and b be a positive integer. We then define:

(a) σ is b-compressible if K(σ) < |σ| − b; otherwise it is b-incompressible;

(b) σ is compressible if it is 1-compressible, i.e., if K(σ) < |σ|; otherwise it is
called incompressible; and

(c) σ is random if σ is incompressible, i.e., if K(σ) ≥ |σ|.

Since K assigns a higher complexity value to strings than C (uniformly modulo a
constant), strings compress a “little less” under K than under C, and so random
strings now become “more numerous”. In particular, the existence theorem for
random strings (which holds for any complexity measure) remains valid.
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THEOREM 32 Existence of Random Strings. For every n there are random
strings of length n. More generally, for any n and b > 0 at least 2n − 2n−b+1 + 1
strings of length n are b-incompressible.

8.1 Properties of finite random strings

We mention two more “stochastic” properties of finite random strings which con-
form to our intuition as evidence that incompressibility is the correct definition of
randomness for finite strings.

THEOREM 33. Long random strings have a “balanced” number of 0s and 1s.
More precisely, for any ε > 0 there is k such that for all random strings σ of
length n > k, we have ∣∣∣∣Sn[σ]

n
− 1

2

∣∣∣∣ < ε,

where Sn[σ] denotes the number of 1s in σ.

THEOREM 34. Any run of zeros or ones in a random string n is asymptotically
bounded above by O(log n). That is there is k and a constant a such that for every
random string σ of length n > k, the longest run of 0s in σ is less than a log n.

8.2 Kolmogorov Complexity as vindication of Laplace

We end our discussion of randomness for finite strings with the position that
Kolmogorov Complexity provides a satisfactory solution to Problem 2 of the In-
troduction. As outlined and evidenced above, the incompressibility definition of
randomness for finite strings conforms quite well to our intuition. In fact, an impor-
tant test of randomness for finite strings now is to apply standard computational
compression programs to the the string in question and check if it compresses or
not.

Kolmogorov Complexity also provides a strong vindication of all of Laplace’s
intuitions, by classifying strings according to their complexity: The lower the
K value, the more “regular” the strings, and the higher the K value the more
“irregular” (or random) they are.

Cause and Regularity Laplace mentions that we perceive a “cause” in strings
which are “regular”, “those in which we observe a rule that is easy to grasp.”
Kolmogorov complexity provides a precise and objective way to define this
idea, using short effective descriptions. Given a string σ with small complex-
ity value K(σ), its “cause” (or a “rule that is easy to grasp”) is any of its
minimal descriptions, i.e. a minimal length strings (of length K(σ)) which
describes σ via the optimal algorithm. If K(σ) is not small compared to |σ|,
we regard the string σ as “irregular” or random. This interpretation of cause
and regularity is obtained by classifying strings by their complexity, i.e., by
measuring how short an effective description is possible. The invariance of
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Kolmogorov complexity under all possible methods of effective description
(for sufficiently large strings) shows that this is not an arbitrary measure of
complexity, but is essentially an objective one.

Rarity of Regularity Laplace mentions that the “irregular sequence . . . are in-
comparably more numerous” compared to the “regular” ones. This is again
confirmed by that fact that if cause or regularity is defined as descriptions
which are sufficiently short, then the irregular sequences automatically be-
come “incomparably more numerous”. We saw this in the theorem which
showed that only a small minority of strings compress well.

Probability of Regular Strings Laplace explains that while the regular strings
are much less numerous, if we observe a highly regular but long string, “we
seek a cause whenever we perceive symmetry”, and it is “more probable”
that “this event ought to be the effect of a regular cause” than “that of
chance”. For example, let σ be the thousand bit long string containing the
pattern 01010101 . . . throughout the entire string. If we observe σ, our in-
tuition tells us that in a sense not explained by classical probability theory,
it is remarkably different from another random string generated by a thou-
sand coin flips. Classical probability, being information-blind, will assign
the same probability 1/2|σ| = 1/21000 to σ, as well as to all other thousand
bit string. But the algorithmic probability (using Kolmogorov complexity)
of σ is 1/2K(σ). If in addition to random coin flips we also consider “ef-
fective causes”, then algorithmic probability remarkably explains Laplace’s
intuition. As the string σ is regular (has a short description), K(σ) will be
quite smaller than |σ| = 1000, and so its algorithmic probability 1/2K(σ)

will be much higher compared to another random string of the same length,
since the algorithmic probability of a random string will be, by definition
of randomness for finite strings, at most 1/2|σ| = 1/21000. In other words,
the probability that σ was generated by an “effective cause” will be higher
than the probability that it was generated randomly, by a factor of at least
2|σ|−K(σ) = 21000−K(σ). With the conservative estimate of K(σ) = 950, this
factor is 1125899906842624.

At last, the Laplace Program is realized.

9 KOLMOGOROV-CHAITIN RANDOMNESS AND SCHNORR’S
THEOREM

We now return back to randomness for infinite sequences.
We will say that an infinite binary sequence x is b-incompressible if every initial

segment 〈x1, x2, . . . , xn〉 of x is b-incompressible as a finite string, i.e. if

K(〈x1, x2, . . . , xn〉) > n− b for all n.
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We say that the infinite binary sequence x is incompressible it is b-incompressible
for some b, i.e., if no initial segment of x can be compressed by more than a fixed
number of bits.

This property of incompressibility of an infinite binary sequence x can be re-
garded as an information-complexity definition of randomness for x.

DEFINITION 35 Kolmogorov-Chaitin Randomness. An infinite binary sequence
x is Kolmogorov-Chaitin Random if x is incompressible (no initial segment of x
can be compressed by more than a fixed number of bits), or in other words, if

For some b: K(〈x1, x2, . . . , xn〉) > n− b for all n.

Remark: The term “Kolmogorov-Chaitin random” is not in standard use. In
the literature it is known variously as “Chaitin random”, “Levin-Chaitin random”,
“Levin-Chaitin-Schnorr random”, K-incompressible, etc.

The definition of Kolmogorov-Chaitin randomness appears to be significantly
different when compared to the definition of Martin-Löf randomness (or Solovay
randomness).

The notion of Martin-Löf randomness is based on effective stochastic laws — or
predicates (properties) which are satisfied almost surely, i.e. with probability one.
Randomness of a sequence x in the Martin-Löf sense is defined not by looking at
the individual sequence x alone, but using an entire collection of predicates of x,
and the definition appears to be in the form a “second-order” definition, involving
universal quantification over predicates of sequences.21

On the other hand, the Kolmogorov-Chaitin definition does not directly refer to
any external object other than the sequence x itself and the complexity measure
K. Instead of taking an “external top down” approach, it looks at x “from inside”
in terms of initial segments (a purely internal view), measuring their information-
complexity using K, and declares x to be random if none of the initial segments
admit any substantially shorter description. The Kolmogorov-Chaitin definition
therefore reduces the definition of randomness for infinite sequences to that for
finite strings, establishing a fundamental connection between the two notions.

This striking dissimilarity makes the following celebrated theorem of Schnorr
truly remarkable.

THEOREM 36 Schnorr’s Theorem. A sequence is Martin-Löf random if and only
if it is Kolmogorov-Chaitin random.

For a proof, see any of [Nies, 2009; Downey and Hirschfeldt, 2010; Li and Vi-
tanyi, 2008; Chaitin, 1992].

The equivalence of Martin-Löf randomness with Kolmogorov-Chaitin random-
ness forms the basis of the assertion that Martin-Löf’s definition has truly captured
the notion of randomness for infinite sequences, and therefore gives a satisfactory

21Of course, since the predicates in question are effectively enumerated, in actuality the uni-
versal quantifier is reduced to range over natural numbers, but we are referring to the form of
the definition in classical terms.
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solution to this classic problem in the philosophy of mathematics and statistics
(Problem 1 of the Introduction).

Moreover, as the Kolmogorov-Chaitin definition shows, the notions of random-
ness for finite and infinite sequences are fundamentally linked, and therefore the
solutions to both Problems of the introduction can be given simultaneously in an
interconnected fashion. (A characterization of Martin-Löf randomness in terms
of plain complexity C has also been obtained, but it is a much more complicated
condition compared to the one for K.)

From now on, by a random infinite sequence we will mean a Martin-Löf random
or equivalently Kolmogorov-Chaitin random sequence.

DEFINITION 37 Randomness for Infinite Sequences, Final Version. An infinite
binary sequence x will be called random if it is Martin-Löf random or equivalently
Kolmogorov-Chaitin random.

The assertion that Martin-Löf randomness or equivalently Kolmogorov-Chaitin
randomness captures the “true notion of randomness” conforming to our intuition
is sometimes called the Martin-Löf-Chaitin thesis. The Martin-Löf-Chaitin thesis,
like the Church-Turing thesis for the definition of algorithm, is not a mathematical
proposition that can be be proved or refuted. We discuss it further in Section 12.

9.1 Properties of infinite random sequences

We list here some regularity properties of infinite random sequences as evidence
that we have the correct definition of randomness for infinite sequences. Recall
that when we say “random” without qualification, we mean Martin-Löf random,
or equivalently Kolmogorov-Chaitin random.

For proofs and further details of the following facts, see [Calude, 1994; Li and
Vitanyi, 2008; Nies, 2009; Downey and Hirschfeldt, 2010].

THEOREM 38 Effective Place Selections Preserve Randomness. Let 〈x1, x2, . . . 〉
be a random infinite binary sequence and ϕ : {0, 1}∗ → {0, 1} be a partial com-
putable function. Suppose that ϕ(〈x1, . . . , xn−1〉) = 1 for infinitely n, and n1 =
the least n such that ϕ(〈x1, . . . , xn−1〉) = 1, n2 = the next such n, etc. Then the
subsequence 〈xn1 , xn2 , . . . , xnk

, . . . 〉 is also random.

COROLLARY 39. Every random sequence is Mises-Wald-Church random.

COROLLARY 40 Computable Restrictions Preserve Randomness. If x is ran-
dom, and n1 < n2 < n3 < . . . form a computable sequence of strictly increasing
numbers then the sequence 〈xn1 , xn2 , xn3 , . . . 〉 is also random.

The above result remains true if n1, n2, . . . form a computable sequence of
distinct numbers (not necessarily increasing).

COROLLARY 41. If x is random, then neither the set {n : xn = 1} nor its com-
plement {n : xn = 0} can contain any infinite computably enumerable set (they are
immune). In particular, neither these sets nor the sequence x is computable.
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A real number a is called computable if the set {(m,n) : m/n < |a|} is a com-
putable subset of N×N.

A real number a ∈ [0, 1] is called random if there is a random sequence x ∈
{0, 1}N such that x is the sequence of digits in a binary expansion of a, i.e. a =∑∞
n=1 xn/2

n.

COROLLARY 42. If a ∈ [0, 1] is a random real number, then a is not computable.
In particular, a is irrational, and in fact transcendental, since all algebraic real
numbers are computable.

The following result shows that like being convergent, being random is an even-
tual property.

THEOREM 43. The randomness of a sequence is a “tail” property. In particular:

(a) If the sequence y is obtained from x by altering only finitely many values of
x, then x is random iff y is random.

(b) If x = 〈x1, x2, . . . , xn, . . . 〉 and y = 〈xn+1, xn+2, . . . , xn+k, . . . 〉 is obtained
by removing the first n terms of x (an n-step shift), then x is random iff y
is random.

THEOREM 44. If x is random, then:

(a) x satisfies the law of iterated logarithms.

(b) x is absolutely Borel normal: If the real number x̂ having x as its binary
expansion digits is expanded in base b > 1, then the resulting expansion is
Borel normal in base b.

9.2 An example of a specific random sequence: Ω

It is clear that a set S of strings is prefix-free iff the set of basic intervals N(σ) (in
the Cantor space) indexed by strings from S form a disjoint family, and so the open
set formed by their union has a measure equal to the sum of the measures of the
basic intervals, i.e., µ (∪σ∈SN(σ)) =

∑
σ∈S µ(N(σ)) =

∑
σ∈S 1/2|σ|. Therefore:

For any prefix-free set S of strings, we have:
∑
σ∈S

1
2|σ|

≤ 1,

an important fact known as the Kraft inequality.
Recall now the partial computable prefix-free function ξ that used to define the

optimal prefix-free complexity K. We define a real number Ω, called the Halting
Probability or Chaitin’s Omega, by:

Ω =
∑

σ∈dom(ξ)

1
2|σ|

.
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Since the domain of ξ is a prefix-free set, Ω ≤ 1 by the Kraft inequality.
Fix a program Q which computes the partial computable function ξ. Then Q

halts on an input binary string δ iff ξ(δ) is defined. Suppose now that a fair coin
is flipped until some initial segment of the sequence of flips is found to be in the
domain of ξ, or equivalently until it generates a string having an initial segment on
which Q halts. Of course, in many cases no such string will be generated (i.e. we
may have an infinite sequence of flips for which there is no initial segment string
on which Q ever halts). In this sense, Ω denotes the probability that Q halts if
its input is generated by a random sequence of coin flips. This is the reason Ω is
known as the Halting Probability. It is a non-computable real number, and so is
transcendental.

Alternatively, define an open set by:

GΩ =
⋃

σ∈dom(ξ)

N(σ).

Then GΩ is effective open and Ω equals the Lebesgue measure of GΩ.
The infinite sequence of bits forming the binary expansion of Ω is also denoted

by Ω. Ω is then a random infinite sequence, our first example of a specific random
infinite sequence.

Ω has many remarkable properties, see [Bennett, 1979; Calude, 1994; Chaitin,
1992].

10 RELATIVE AND STRONGER RANDOMNESS. HIERARCHIES

Given two sequences x = 〈x1, x2, . . . 〉 and y = 〈y1, y2, . . . 〉, we merge them into a
single sequence x⊕ y by intertwining the terms as follows:

x⊕ y = 〈x1, y1, x2, y2, . . . , xn, yn, . . . 〉.

We call x ⊕ y the join of x and y. Since each of x and y can be extracted from
x⊕y, we can, from an information content point of view, think of x⊕y as perfectly
combining the information contained in x and that in y, without any “information
loss”.

From the properties of randomness given earlier, it is immediate that if x ⊕ y
is random then so are both x and y. However, if x and y are random, it does not
follow that x⊕ y is random. As a drastic example, if x = y, then x⊕ y cannot be
random since every alternate pair of consecutive bits of x⊕ y would be identical,
which allows one to devise a simple successful gambling system against it (it also
violates Borel normality as neither the pattern 010 nor the pattern 101 occurs in
it).

So the question arises: Under what conditions on x and y do we have x ⊕ y
random?

This was answered beautifully by van Lambalgen in terms of the notion of rela-
tive randomness, which we now discuss. Roughly speaking, x is random relative to
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y (abbreviated x is random in y) if even a complete knowledge of y does not improve
the predictability of the bits of x. This is exactly opposite of the situation in our
drastic example of x = y, where knowledge of y allows us to perfectly predict x, or,
in other words, the information about x can be obtained (in this case completely)
from information of y. We may therefore expect, that the relation of one sequence
being random relatively to another is some form of “information-independence”,
although it is not a priori clear that this relation should be symmetric (the drastic
example shows that the relation must be irreflexive).

We proceed to formalize this idea.

DEFINITION 45 Effective Open, Relative Version. Let z ∈ {0, 1}N. A set G is
said to be effective open relative to z, or simply effective open in z, or in symbols
G is Σ0

1(z), if there is an effective open set H such that for all x ∈ {0, 1}N:

x ∈ G ⇐⇒ x⊕ z ∈ H.

Notice how, in the formation of G, the information of z becomes available:
As before, G is still the union of basic intervals which are enumerated by some
computation, but now that computation is also allowed to use any additional
information from z as needed.

Thus, if G is effective open, then G is effective open in z, for any z (additional
information from z is available, but not used, in the computation which enumerates
basic intervals forming G). On the other hand if G is effective open in z and z is
computable, then G is already effective open (since z can be computed by some
program P , the computation which enumerates basic intervals forming G does not
get any additional help by knowing z, since any information about z could also be
obtained by calling P as a subprogram).

Similarly, we define a sequence of sets being “uniformly effective open in z”.

DEFINITION 46 Uniformly Effective Open (Relative). A sequence G1, G2, . . .
of sets is uniformly effective open in z, or uniformly Σ0

1(z), if there are sets
H1,H2, . . . , uniformly effective open, such that for all n,

x ∈ Gn ⇐⇒ x⊕ z ∈ Hn.

Again, we define a set being “effective measure-zero in z” just by changing
the old definition with “effective open” replaced by “effective open in z”. (This
process, known as relativization, can actually be carried out fruitfully throughout
most of computability theory.)

DEFINITION 47 Effective Measure-Zero, Relative Version. A set E is effective
measure-zero in z if there are sets G1, G2, . . . , uniformly effective open in z, such
that µ(Gn) < 1/n and E ⊆

⋂
nGn.

And, finally:

DEFINITION 48 Relative Randomness. x is random relative to y (or x is random
in y) iff x does not belong to any set effective measure-zero in y.
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Now we can state van Lambalgen’s theorem:

THEOREM 49 Van Lambalgen. For x, y ∈ {0, 1}N, the following conditions are
all equivalent to each other:

(a) x⊕ y is random;

(b) y is random in x and x is random in y;

(c) y is random and x is random in y;

Van Lambalgen’s theorem is remarkable, because the apparently weaker third
condition in the theorem implies the second. In particular, if x and y are random,
then

x is random in y =⇒ y is random in x,

which is surprising, because, as we mentioned earlier, this symmetry is not at all
clear a priori.

The existence theorems all remain valid under relative randomness. E.g., for any
y, the set of sequences random in y form a full-measure set whose complement is
effective measure-zero in y. If y is computable, this does not give a new collection,
as then the set of sequences random in y equals the set of random sequences.
But if y is not computable, we may have stronger versions of randomness. E.g.,
if y is the characteristic function of the uncomputable set ∅′, or if y is Ω (more
precisely, the sequence y consists of the digits in the binary expansion of Ω), then
the collection of sequences random in y cannot contain Ω anymore, and therefore
form a strictly smaller subclass of the random sequences, known as the 2-random
sequences. Using a prefix free function ξΩ partial computable in Ω which is optimal
for all prefix free functions partial computable in Ω, one can now define the halting
probability relative to Ω as:

Ω2 =
∑

σ∈dom(ξΩ)

1
2|σ|

.

Then Ω2 is 2-random, while Ω is random but not 2-random.
This process can be iterated to stronger and stronger versions of randomness,

which we now describe in greater generality.

10.1 The arithmetical hierarchy and n-randomness

We will use a notation where relations are identified with predicates: If R is a
3-place relation, then we abbreviate “(a, b, c) ∈ R” by simply writing R(a, b, c),
etc.

A relation A ⊆ Nk × {0, 1}N is called effective open if there is a computably
enumerable E ⊆ Nk × {0, 1}∗ such that for all m1, . . . ,mk ∈ N and x ∈ {0, 1}N,

A(m1, . . . ,mk, x) ⇐⇒ E(m1, . . . ,mk, σ) for some initial segment σ of x.
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A relation is called effective closed if its complement is effective open, and it is
called computable (or effective clopen) if it is both effective open and effective
closed.

Starting with the computable relations as a basis, we can define relations of
higher complexity by adding a series n “alternating quantifiers” ranging over nat-
ural numbers as follows. We define a relation A to be Σ0

n (n ≥ 1) if there is a
computable relation R such that for all m1, . . . ,mk ∈ N and x ∈ {0, 1}N,

A(m1, . . . ,mk, x) ⇐⇒ (∃p1)(∀p2) . . . (Qpn)R(p1, . . . , pn,m1, . . . ,mk, x),

where Q stands for “∃” if n is odd and for “∀” if n is even.
We also define a relation to be Π0

n if its complement is Σ0
n, and a relation to be

∆0
n if it is both Σ0

n and Π0
n.

It then turns out that the class Σ0
1 coincides with the class of effective open

relations, and ∆0
1 is same as the class of computable relations.

Moreover, this indeed gives a strict hierarchy of classes of relations defined by
their definitional complexity (the number of alternating quantifiers), with the class
∆0
n strictly contained in each of Σ0

n and Π0
n, both of which are strictly contained

in ∆0
n+1, as shown below.

Σ0
1

( (
∆0

1 ( (
Π0

1

Σ0
2

( (
∆0

2 ( (
Π0

2

∆0
3 . . . . . .

Σ0
n

( (
∆0
n ( (

Π0
n

∆0
n+1 . . .

This hierarchy is called the Arithmetical Hierarchy. (It is a refinement of the
finite levels of the classical hierarchy of Borel sets in analysis, but only effective
countable unions and intersections are allowed. See [Rogers Jr, 1987; Odifreddi,
1992; Moschovakis, 1980] for more details.)

Finally, we can define n-randomness.

DEFINITION 50. A sequence z is called n-random iff there is no Σ0
n-effective

measure-zero set containing z, or more precisely if there is no sequence H1,H2, . . .
of sets such that the relation H defined by H(n, x) ⇐⇒ x ∈ Hn is Σ0

n, µ(Hn) <
1/n for all n, and z ∈ Hn for all n.

We say z is arithmetically random iff z is n-random for all n = 1, 2, . . . .

One can show that it does not make any difference to the definition whether we
require the sets Hn to be all open or not.

Thus, 1-random is same as being random (i.e., Martin-Löf-random), and we
have a sequence of stronger and stronger notions of randomness, corresponding to
the levels of the arithmetical hierarchy. This hierarchy is indeed strict, meaning
that (n+1)-randomness implies n-randomness, but for each n there is an n-random
sequence which is not (n+1)-random. E.g., Ω is 1-random but not 2-random, and
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Ω2 is 2-random but not 3-random, and so on. Moreover,

x is 2-random ⇐⇒ x is random relative to Ω

⇐⇒ x is random and Ω is random relative to x.

The first of these equivalences follow from standard facts about the arithmetical
hierarchy, and the second from van Lambalgen’s theorem.

Recall that an infinite binary sequence x = 〈x1, x2, . . . 〉 was defined to be
Kolmogorov-Chaitin random if for some b > 0, K(〈x1, x2, . . . , xn−1〉) > n − b
for all n. If prefix complexity K is replaced by plain complexity C, then one
produces an empty definition, as was proved by Martin-Löf: There is no sequence
x = 〈x1, x2, . . . 〉 such that for some b > 0, C(〈x1, x2, . . . , xn−1〉) > n− b for all n.
However, it was also shown that the sequences x which satisfy the condition:

for some b > 0, C(〈x1, x2, . . . , xn−1〉) > n− b for infinitely many n,

form a full-measure set which is contained in the set of random sequences. Such
sequences are sometimes called Kolmogorov Random. Remarkably, it was estab-
lished recently that the Kolmogorov random sequences are precisely the 2-random
ones.

10.2 Other stronger notions of randomness

Many other notions of randomness stronger than 1-randomness have been studied.
E.g., by relaxing the condition that µ(Hn) < 1/n in the definition of n-randomness
to limn µ(Hn) = 0, one obtains the notion of weak-(n+ 1)-randomness, which lies
strictly between n-randomness and (n+ 1)-randomness.

One can extend the arithmetical hierarchy into the transfinite using computable
ordinals, which results in the hyperarithmetical hierarchy. Martin-Löf first sug-
gested the notion of hyperarithmetical randomness. Beyond the hyperarithmeti-
cal classes, there is an even more comprehensive hierarchy known as the analytical
hierarchy. At the first level of this hierarchy are the Π1

1 relations. A relation A is
called Π1

1 if there is an arithmetical relation (Σ0
2 is enough) B such that

A(n1, . . . , nk, x) ⇐⇒ ∀y B(n1, . . . , nk, x⊕ y).

(The class of Π1
1 relations includes all hyperarithmetical sets and more, and hence

certainly all arithmetical sets as well.)
The notion of randomness in the sense of Martin-Löf has recently been extended

to the class of Π1
1 sets (and has been named Π1

1-ML-randomness) fruitfully by
Hjorth and Nies [Hjorth and Nies, 2007], and they have established the analog of
Schnorr’s theorem and other results.

The strongest notion of randomness that appears to have been studied so far is
called Π1

1-randomness by Hjorth and Nies [Hjorth and Nies, 2007]. The union of
all Π1

1 measure-zero sets is itself a Π1
1 measure-zero set (the largest Π1

1 measure-
zero set),, so Π1

1-randomness is defined as membership in the complement of the
largest Π1

1 measure-zero set.
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10.3 Reducibility and degrees of computability

Given A ⊆ N and z ∈ {0, 1}N, we say that A is computably enumerable in z, or in
symbols A ∈ Σ0

1(z) if there is a c.e. set B ⊆ N× {0, 1}∗ such that ∀n(A(n) ⇐⇒
∃kB(n, 〈z1, z2, . . . , zk〉)).

We say that A is computable in z, or A is Turing-reducible to z, in symbols
A ≤T z, if both A and its complement are computably enumerable in z. Finally
a sequence x ∈ {0, 1}N is computable in z or Turing-reducible to z if the set
{n : xn = 1} is computable in z. Roughly speaking, x ≤T y means that x can be
computed by a program which has access to the bits of y in order, or even more
vaguely y is computationally at least as complex as x.

The notion of Turing-reducibility is reflexive and transitive, and the correspond-
ing equivalence relation, called Turing equivalence, x ≡T y ⇐⇒ x ≤T y ∧ y ≤T x
generates equivalence classes known as Turing degrees. The study of Turing-
reducibility and degrees has been one of the most important areas of classical
recursion theory. There are several other types of computational reducibilities,
generally stronger than Turing-reducibility, that are important for the theory of
computability.

The interaction between randomness and Turing-reducibility (and other com-
putational reducibilities not introduced here) has also been studied, and has gen-
erated fruitful applications in both directions.

Another notion straddling both randomness and computability theory that has
been studied extensively is that of K-triviality. A sequence x = 〈x1, x2, . . . 〉 is
K-trivial if ∀n(K(〈x1, . . . , xn〉) ≤ K(n) + b for some constant b. This property is
quite orthogonal to that of randomness. It is known that x is K-trivial iff every
random sequence is random relative to x.

Many other notions that interact with both computability theory and random-
ness form a part of current research, which is progressing vigorously. We refer
the reader to [Nies, 2009; Downey and Hirschfeldt, 2010] where further extensive
references can be found.

11 RANDOMNESS VIA MARTINGALES. OTHER FREQUENTIST
DEFINITIONS

In the previous section, we considered randomness notions stronger than Martin-
Löf randomness. Now we will focus on weaker notions of randomness, which are
perhaps more important from a philosophical viewpoint.

11.1 Schnorr randomness

A critique of Martin-Löf randomness by Schnorr was that it yields too strong a
notion of randomness as its notion of defining effective measure-zero is not effective
enough. In order for a sequence of uniformly effective open sets G1, G2, . . . to
define an effective measure-zero set via intersection, it is not enough, according
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to Schnorr, that their measures effectively approach zero by just having effective
bounding (e.g. as µ(Gn) < 1/n), but we need the measures µ(Gn) of the sets
themselves to be computable real numbers (uniformly in the index n). Using
this stronger criteria for being effective measure-zero, we get a weaker notion of
randomness, called Schnorr randomness.

Schnorr randomness has been studied extensively, but it fails to have certain
regularity properties of Martin-Löf randomness. Two examples are:

(a) Unlike Martin-Löf randomness, Schnorr randomness does not possess a uni-
form test, i.e. the class of Schnorr random sequences cannot be defined as
the complement of the intersection of a sequence of uniformly effective open
sets G1, G2, . . . such that µ(Gn) < 1/n and such that µ(Gn) is a computable
real number uniformly in n.

(b) The van Lambalgen theorem fails for Schnorr randomness. In fact, there is
Schnorr random sequence z = x ⊕ y such that that the two halves x and y
are Turing equivalent. This does not conform well with the intuitive notion
of randomness.

11.2 Randomness defined by martingales

Recall that in von Mises type definitions of randomness, one uses a the concept
of a betting strategy, or more precisely a place selection rule, to select places on
which to bet, and after selections are all done, one checks if the limiting frequency
value has become biased or not (subsections 5.1 and 5.2). The definition does not
a priori have anything to do with the amount of bet. Such properties are called
stochasticity (as opposed to randomness) in the modern mathematical literature,
but note that this is essentially a matter of terminology.

We now introduce a concept of betting strategy involving the amount of bet, or
equivalently the capital of the gambler (“total money in pocket”), at each stage
of betting.

We think of the infinite sequence x = 〈x1, x2, x3, . . . 〉 being revealed to the
gambler, bit by bit, in order. Before each bit is revealed, the gambler may bet
an amount a predicting the value of the bit (one of “next bit revealed will be 0”
or “next bit revealed will be 1”). We will assume the fairness condition that if
the prediction turns out to be correct, the gambler gains an amount of a (capital
increases by a), otherwise the gambler loses the same amount a (capital decreases
by a).

To formalize this type of strategy, we think of a finite binary string σ of length
|σ| = n − 1 as representing the n-th stage of the game, so that σ consists of the
bits of the infinite sequence that have been revealed so far (before the n-th bit is
revealed), and let F (σ) denote the gambler’s capital at this stage.

Suppose that at stage σ, with capital F (σ), the gambler bets an amount a
predicting the next bit to be 0. If the gambler turns out to be correct, then σ is
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extended to σ0 and the capital goes up by a to F (σ0) = F (σ)+a, but if incorrect,
then σ is extend to σ1 and the capital goes down by a to F (σ1) = F (σ) − a.
Similarly, if the gambler had predicted the next bit to be 1 (with same bet amount
a) then we would have σ extending to σ1 and F (σ1) = F (σ) + a if the gambler
turns out to be correct, and σ extending to σ0 and F (σ0) = F (σ) − a if the
gambler is incorrect. A final case is when the gambler chooses not to bet at this
stage, which is expressed by having a = 0 and F (σ0) = F (σ1) = F (σ) (no change
in capital).

All cases can be summarized using a single zero sum condition:

capital change if next bit is 0︷ ︸︸ ︷
F (σ0)− F (σ) +

capital change if next bit is 1︷ ︸︸ ︷
F (σ1)− F (σ) = 0.

Therefore we make the following definition.

DEFINITION 51 Martingales. A martingale or capital betting strategy is a func-
tion F : {0, 1}∗ → R satisfying two conditions:

(a) F (σ) ≥ 0, ∀σ (finiteness condition); and

(b) [F (σ0)− F (σ)] + [F (σ1)− F (σ)] = 0, ∀σ (zero-sum or fairness condition).

Given x ∈ {0, 1}N and a martingale F : {0, 1}∗ → R, we say that the martingale
F succeeds on x if the capital becomes unbounded on outcome sequence x, i.e., if

sup
n
F (〈x1, x2, . . . , xn−1〉) = +∞.

An example of a martingale is where the gambler always predicts an outcome
of 0 with the bet being a fixed fraction r (0 < r < 1) of the available capital. This
martingale is the function recursively defined as F (σ0) = (1+r)F (σ) and F (σ1) =
(1− r)F (σ); or, if initial capital is 1, more explicitly as F (σ) = (1 + r)m(1− r)n

if σ is a string of length m+ n with m zeros and n ones.
Another example is where the gambler always predicts an outcome of 0 betting

the entire amount of available capital (“bold play”). If the initial capital is 1, this
martingale is given as follows. If 1 does not occur in σ, then F (σ) = 2|σ|, else
F (σ) = 0.

It can be shown that the concept of a martingale is really a generalization of
place selection rule. To each place selection rule ϕ one can assign an especially
simple type of martingale Fϕ (one which always uses a constant fraction of the
existing capital as the next bet), such that the ϕ-selected part of x has limiting
frequency 1/2 iff Fϕ does not succeed on x. A converse association is also possible.

Possible definitions of randomness either using place selection rules (as done by
von Mises) or using martingales are both examples of characterizations of ran-
domness via impossibility of gambling systems, with the place selection method
known as the frequentist approach, while the martingale method may be called
non-frequentist.
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11.3 A martingale characterization of randomness

A martingale F is said to be computably enumerable if the relation R defined by

R(m,n, σ) ⇐⇒ m

n+ 1
< F (σ)

is computably enumerable as a subset of N×N× {0, 1}∗.
THEOREM 52 Martingale Characterization of Martin-Löf Randomness. A se-
quence x is random (i.e. Martin-Löf random) iff no computably enumerable mar-
tingale succeeds on x.

Thus we now have three different but equivalent definitions for randomness.
This last characterization in terms of martingales gives a definition of randomness
using the unpredictability approach.

If, instead of computably enumerable martingales, we require stronger effective-
ness conditions on the martingales, we obtain weaker notions of randomness, as
we will see now.

In the following, we consider only rational valued martingales.

DEFINITION 53. A partial computable martingale is a partial function F : {0, 1}∗ →
Q satisfying, for all σ:

(a) F (σ) ≥ 0;

(b) If F (σ) is defined, so is F (τ) for any prefix τ of σ;

(c) F (σ0) is defined iff F (σ1) is defined, and if so, then:

[F (σ0)− F (σ)] + [F (σ1)− F (σ)] = 0;

(d) The relation R defined by

R(σ,m, n) ⇐⇒ F (σ) = m/(n+ 1)

is a computably enumerable subset of {0, 1}∗ ×N×N.

A computable martingale is a partial computable martingale which is total (i.e.,
whose domain is {0, 1}∗). (It can be seen that the graph of a computable martin-
gale is computable, not just computably enumerable.)

Here are the main notions of randomness arising out of these types of martin-
gales.

DEFINITION 54. A sequence is partial computably random if no partial com-
putable martingale succeeds on it.

A sequence is computably random if no computable martingale succeeds on it.
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Of course, every partial computably random sequence is computably random.
It can be shown that

(Martin-Löf) Random =⇒ Partial Computably Random
=⇒ Computably Random
=⇒ Schnorr Random,

but none of these implications can be reversed [Nies, 2009].

11.4 Non-monotonic betting strategies

So far, we have seen two distinct types of betting strategies giving rise to notions
of randomness:

• Martingales, or capital betting strategies, which lead to definitions of ran-
domness based on the failure of the martingale, such as partial computable
randomness and computable randomness that we just saw.

• Place selection rules, which lead to definitions of randomness based on the
limiting frequency of the selected part, such as Mises-Wald-Church stochas-
ticity (or randomness), and Church stochasticity (or randomness) that we
saw in subsection 5.2.

These four types just mentioned all are notions weaker than (Martin-Löf) random-
ness.

There is a further generalization possible in the type of betting allowed — called
non-monotonic betting — that actually tightens the notions further, and makes
them more robust.

To understand non-monotonic betting, both for martingales and for place se-
lection rules, suppose that the bits of the sequence x = 〈x1, x2, . . . , xn, . . . 〉 lay
covered on an infinitely long table (instead of being revealed serially one by one).
The gambler now uncovers the bits in a not-necessarily increasing order, and along
the way decides which places to select or to bet on.

For example, the gambler may choose to first uncover the ninth place to find the
value of x9, then uncover the fourth place to find x4, and then, based on these two
observations, decide to select or bet on the seventeenth position (before uncovering
it). After x17 is uncovered, the gambler may choose to next uncover either x3 or
x7, depending on whether x17 turns out to be 0 or 1, and so on.

We omit the formal details and hope that the above informal description makes
it intuitively clear what non-monotonic betting is. In particular, it can be applied
both to martingales and to place selection rules as follows.

DEFINITION 55. A sequence x is called Kolmogorov-Loveland Random if no
computable non-monotonic martingale succeeds on it.

A sequence x is called Kolmogorov-Loveland Stochastic if for every computable
non-monotonic place selection rule, the selected part has limiting frequency = 1

2 .
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A nice feature of non-monotonic betting strategies is that it does not matter
whether we use “computable” or “partial computable” in the definitions above,
as in each case it results in an equivalent notion. In other words, changing the
above definitions to “partial computable” will not give us a stronger notion of
randomness. Thus the non-monotonic forms have a kind of robustness that was
not there for monotonic betting strategies, since partial computable randomness is
a strictly stronger notion of randomness compared to computable randomness, and
Mises-Wald-Church stochasticity is strictly stronger than Church stochasticity.

Since martingales are more general than place selection rules, it follows that
a martingale version will give a stronger notion of randomness than the corre-
sponding stochastic (i.e limiting frequency after place selections) version. Thus
Kolmogorov-Loveland randomness is strictly stronger than Kolmogorov-Loveland
stochasticity, partial computable randomness is strictly stronger than Mises-Wald-
Church stochasticity, and computable randomness strictly stronger than Church
stochasticity.

We summarize these notions in the following table. Each notion in this table
implies the one directly below it and also the one to the right of it.

Strategy type
Monotonicity and computability of strategy function

Non-monotonic Monotonic
Partial or total Partial Total

Martingale Kolmogorov-Loveland Partial Computably Computably
Random (KLR) Random (PCR) Random (CR)

Place selection Kolmogorov-Loveland Mises-Wald-Church Church
Stochastic (KLS) Stochastic (MWCS) Stochastic (CS)

Six Randomness Notions for Various Types of Betting Strategies

In fact, with “Random” standing for Martin-Löf randomness, “Schnorr” for
Schnorr randomness, and the rest of the abbreviations as in the table, we have the
following implications.

Random ∗−−−−→ KLR −−−−→ PCR −−−−→ CR −−−−→ Schnorry y y
KLS −−−−→ MWCS −−−−→ CS

Implication Diagram for Weak Randomness Notions

Each arrow represents an implication, and almost all the implications above are
strict (they cannot be reversed). However, for the implication marked with “∗”,
it is not known whether the implication can be reversed. In other words we have:
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Question. While every Martin-Löf random sequence is Kolmogorov-Loveland
random, is the converse true?

This is perhaps the biggest open problem in current research on randomness.
Many researchers feel that the answer is no, although work of Merkle et al [Merkle
et al., 2006] have shown that the two notions are rather close.

Nies and Miller have published a list of open problems [Miller and Nies, 2006]
in the area, some of which have been solved since then.

11.5 Can we resurrect von Mises?

While Kolmogorov-Loveland randomness is the only major notion of randomness
that remains close to Martin-Löf randomness, it does not have the true spirit of
von Mises’ idea of randomness, since von Mises’s definition, which is based on
place selections, is a truly frequentist one, that is, it is defined in terms of limiting
frequency, while the martingale notions are all defined in terms of capital growth.
Therefore, even if it turns out that Kolmogorov-Loveland randomness is equivalent
to Martin-Löf randomness, one would still be looking for a characterization of
Martin-Löf randomness in terms of a frequentist condition.

In recent literature, the term stochasticity is used for randomness defined in
terms of a frequentist condition, or more precisely using the limiting frequency
of place selections. Among these, the one closest to Martin-Löf randomness is
Kolmogorov-Loveland stochasticity, as the above diagram of implications indi-
cates. Unfortunately, like Mises-Wald-Church stochasticity, Kolmogorov-Loveland
stochasticity gives random sequences which do not satisfy the Law of Symmetric
Oscillations, and therefore is rather far from Martin-Löf randomness.

Li and Vitanyi writes in their 2008 book [Li and Vitanyi, 2008, p. 158]:

“[T]he problem of giving a satisfactory definition of infinite Martin-Löf
random sequences in the form proposed by von Mises has not yet been
solved.”

Thus, the search for a true frequentist characterization of Martin-Löf randomness
continues.

11.6 The Ergodic Theorem as a Frequentist Definition

The general version of the Birkhoff Ergodic Theorem is not fully effective (see
[Avigad, 2009; Hoyrup, 2008]). However, we consider the version of the theorem
which is known as the “law of frequencies”. We restrict to Lebesgue measure on
the Cantor space.

Say that a measurable map U : {0, 1}N → {0, 1}N is measure preserving if
µ(U−1[A]) = µ(A) for all measurable A, and a map T : {0, 1}N → {0, 1}N is ergodic
if T is measure preserving and for all measurable A, if T−1[A]∆A is measure-zero
then µ(A) = 0 or µ(A) = 1 .
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We now state the Birkhoff Ergodic Theorem in a slightly variant form:

THEOREM 56 The Birkhoff Ergodic Theorem as the Law of Frequencies. If
T : {0, 1}N → {0, 1}N is ergodic, E is measurable, and U : {0, 1}N → {0, 1}N is
measure preserving, then (we put JP K = 1 if the statement P is true, else JP K = 0):

For almost all x: lim
n→∞

1
n

n∑
k=1

q
T k(U(x)) ∈ E

y
= µ(E),

i.e., the frequency with which the T -orbit of U(x) enters E approaches µ(E).

We also view of this theorem, the Law of Frequencies, as a form of equidistri-
bution (as in Weyl equidistribution): The T -orbit of U(x) is equidistributed.

Now if ϕ is a place selection rule satisfying the property that for almost all
x, ϕ(〈x1, x2, . . . , xn−1〉) = 1 for infinitely many n, then the map Uϕ : {0, 1}N →
{0, 1}N

Uϕ(x) = ϕ-selected part of x

is defined for almost all x and is a measure preserving (and continuous) map.
Finally, take T to the left shift map T (〈x1, x2, . . . 〉) = 〈x2, x3, . . . 〉, and E =
N(1) = {x ∈ {0, 1}N : x1 = 1} = the basic interval consisting of sequences with
1st bit = 1.

With the above setting, the condition in the von Mises definition coincides
precisely with the condition in the Birkhoff Ergodic Theorem above, at least in
the case when the domain of Uϕ has full measure. Furthermore, if E is allowed
to range of over the basic intervals, then the condition of Borel normality of is
obtained, which we view as equidistribution of the T -orbit of U(x).

Perhaps the main weakness of the von Mises definition is the lack of the require-
ment of general equidistribution, which is illustrated in the approach of [Knuth,
1998]. The notion of equidistribution is more general than the notion of limiting
frequency, while still being in the frequentist spirit.

Suppose we try to strengthen the Mises-Wald-Church definition by requiring
Borel normality of the ϕ-selected part, not just existence of unbiased limiting
frequency, i.e., we demand that for x to be random, the ϕ-selected part of x has to
be Borel normal in base 2 for every partial computable place selection rule ϕ. This
does not really change anything, as all Mises-Wald-Church stochastic sequences
are Borel normal. However, instead of being limited to limiting frequency, it casts
the definition in terms of equidistribution of the T -orbit of U(x), where T is the
left-shift map. In other words, in Mises-Wald-Church stochasticity, the condition
that the place-selected part y of x must satisfy is equivalent to the equidistribution
of the following sequence of sequences obtained from y:

〈y1, y2, y3, . . . 〉, 〈y2, y3, y4, . . . 〉, 〈y3, y4, y5, . . . 〉, . . .

We think that a frequentist definition of randomness should allow more general
forms of equidistribution, so long as the method of forming the sequence is uni-
formly effective and ergodic (see [Knuth, 1998] for examples).
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For example, suppose that the natural numbers are partitioned into an infinite
number of infinite uniformly computable subsets, say into the sets {1, 3, 5, 7, . . . },
{2, 6, 10, 14, . . . }, {4, 12, 20, 28, . . . }, etc. Then for a random x, if y is obtained from
x by effective place selection, we expect that the sequences obtained by restricting
y to each of these subsets

〈y1, y3, y5, . . . 〉, 〈y2, y6, y10, . . . 〉, 〈y4, y12, y20, . . . 〉, . . .

should be equidistributed (which follows from the Ergodic Theorem). It is not a
priori clear that Mises-Wald-Church stochasticity guarantees this. (Kolmogorov-
Loveland stochasticity allows more general forms of U , but the T operator is still
the same left shift.)

Perhaps the following definition can be taken to be an “ergodic generaliza-
tion” of von Mises’ definition of randomness, where we think of U as “place selec-
tion”:

DEFINITION 57. x ∈ {0, 1}N is random iff for all sufficiently effective E ⊆
{0, 1}N, sufficiently effective ergodic T , and sufficiently effective measure preserv-
ing U , we have:

lim
n→∞

1
n

n∑
k=1

q
T k(U(x)) ∈ E

y
= µ(E),

i.e., the frequency with which the T -orbit of U(x) enters E approaches µ(E).

The three instances of the phrase “sufficiently effective” are deliberately left
open to interpretation. We ask:

Question. Are there interpretations of “sufficiently effective” in the
above definition which characterize Martin-Löf randomness?

For example, it is known that with “sufficiently effective” interpreted as ∆0
1 (com-

putable) in all three instances, every Martin-Löf random sequence is random in
the sense of the above definition.22 However, we are not aware of any result that
positively answers the above question.

12 CONCLUSION. THE MARTIN-LÖF-CHAITIN THESIS

In this article, we introduced the reader to definitions of the notion of a random
sequence using the three main ideas described in Section 1.6 that have dominated
algorithmic randomness (cf. [Downey and Hirschfeldt, 2010]):

22See [González, 2008; Hoyrup, 2008] for a proof and a further list of problems. See also
[V’yugin, 1997; V’yugin, 1999]. In [González, 2008; Hoyrup, 2008], this is studied in a more
general setting (such as effective probability metric spaces), and results have been obtained for
Schnorr randomness, but it is stated as an open problem for Martin-Löf randomness. It appears
that the problem of characterization of Martin-Löf randomness in this ergodic way is open even
in the specific case of the Cantor Space with Lebesgue measure.
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• Randomness as typicality. According to this stochastic or measure-theoretic
idea, randomness of a sequence means its membership in all effective full-
measure sets, or equivalently that the sequence “passes” all effective stochas-
tic tests. The first major stochastic laws, the Borel strong law and Borel
normality go back to 1909. Martin-Löf randomness (1966), the first defini-
tion that is almost universally accepted now as the correct one, is defined
using this approach.

• Randomness as incompressibility. This is an information-complexity ap-
proach that views the sequence “from inside”. According to this idea, ran-
domness means lack of short complete descriptions, or equivalently a high
degree of algorithmic complexity, for all initial parts of the sequence.

• Randomness as unpredictability. According to this approach, randomness
means the impossibility of devising a successful betting strategy against the
sequence in question. In particular, this means that knowledge of some
part of the sequence does not help to predict any other unknown bit. Two
types of definitions of randomness arise from this deeply intuitive approach:
The special frequentist type definitions first put forward by von Mises as
“invariance of limiting frequency under admissible place selections”, and the
more general non-frequentist type found in the definitions of randomness
using martingales.

The ideal definition of randomness would be one which naturally and simultane-
ously satisfies the criteria given by these three approaches.

12.1 The Martin-Löf-Chaitin thesis

Following Delahaye [Delahaye, 1993], we use the term Martin-Löf-Chaitin Thesis
for the assertion that Martin-Löf randomness and equivalently Kolmogorov-Chaitin
randomness is the correct formulation of the intuitive notion of randomness for
sequences. In this sense, it parallels the classic Church-Turing thesis, and is not
a mathematical proposition to be proved or disproved. The Church-Turing thesis
turned out to be highly successful in capturing the intuitive notion of algorithm.

Delahaye has carried out a detailed comparison between the Church-Turing
thesis and the Martin-Löf-Chaitin thesis, and concludes that in both cases, the
resulting precise definitions provide “profound insights to the mathematical and
philosophical understanding of our universe.” Delahaye admits that the Church-
Turing thesis is “more deeply attested” and that the definition of randomness
of sequences is “more complicated” compared to the definition of algorithm, but
hopes that with time the Martin-Löf-Chaitin thesis will reach a level of certainty
similar to the Church-Turing thesis. We think that overall, Delahaye’s assertions
still remain valid.

In the past few decades, there has been a vast amount of research activity in
the area of algorithmic randomness. Many definitions of randomness for sequences
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have been studied extensively, but none was found to be clearly superior to the
Martin-Löf definition. Compared with other notions, it appears to be of optimal
strength: Weaker notions turn out to be too weak, and the stronger ones too
strong. In this way, the Martin-Löf-Chaitin thesis has gained strength in a slow
but steady fashion.

The proliferation of definitions of randomness for sequences makes the field
harder for non-experts, but it should not be regarded negatively. It is an indication
of the richness of the area, and the associated healthy and lively activity provides
refinements and insights deep into the subject. Recall that while we consider
the Church-Turing thesis as more satisfying, there was an even larger number of
associated notions of computability, both stronger and weaker, that were (and still
are) studied fruitfully.

Perhaps the strongest evidence for the Martin-Löf-Chaitin thesis available so far
is Schnorr’s theorem, which establishes the equivalence between a naturally formu-
lated “typicality definition” (Martin-Löf randomness) and a naturally formulated
“incompressibility definition” (Kolmogorov-Chaitin randomness).

Another justification of the Martin-Löf-Chaitin thesis is provided by the simplic-
ity of the definition of Martin-Löf randomness within the arithmetical hierarchy.
As seen in Schnorr’s theorem,

x is random ⇐⇒ ∃b ∀nK(〈x1, . . . , xn−1〉) ≥ n− b.

This shows that Martin-Löf randomness has a Σ0
2 definition (which also follows

from the existence of a universal test). Most other definitions of randomness are
more complicated, and situated at higher levels of the arithmetical hierarchy. In
fact, the definitional complexity of Martin-Löf randomness is at the lowest possible
level of the arithmetical hierarchy, assuming that any definition of randomness
must satisfy the two basic axioms:

(a) No random sequence should be computable.

(b) The set of random sequences has full-measure.

It then follows that no definition of randomness can be Π0
2 or simpler, as it is

a standard “basis theorem” that any Π0
2 set of full-measure contains computable

sequences.
We also doubt if the resolution of the question of whether there are Kolmogorov-

Loveland random sequences which are not Martin-Löf random will have much
impact on the Martin-Löf-Chaitin thesis.

However, a purely frequentist natural characterization of Martin-Löf randomness
can substantially increase the strength of the Martin-Löf-Chaitin thesis. While the
characterization in terms of computably enumerable martingales is a nice “unpre-
dictability definition”, it is not as intuitive nor as frequentist as the von Mises
definition. This is perhaps the most unsatisfying gap in the current state of af-
fairs.
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To summarize, we believe that while the Martin-Löf-Chaitin thesis is not (yet) as
strong as the Church-Turing thesis, the two problems of the introduction, namely
defining randomness for sequences and strings that captures our mathematical
intuition of these objects, have essentially been solved quite satisfactorily as de-
scribed in this article. It is perhaps not too surprising that the definition of
randomness, which in all cases presupposes the definition of algorithm, has turned
out to be more complicated than the definition of algorithm itself.
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Republic, January 24-30, 2009. Proceedings, page 49. Springer, 2009.

[MacHale, 1993] D. MacHale. Comic Sections: The book of mathematical jokes, humour, wit,
and wisdom. Boole Press, Dublin, 1993.
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Index 73
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